diff options
author | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2020-03-02 19:45:39 +0100 |
---|---|---|
committer | jaseg <git-bigdata-wsl-arch@jaseg.de> | 2020-03-02 19:45:39 +0100 |
commit | 331ce442c4b8879af41332eebfae14bf29b74fba (patch) | |
tree | a434d35d3257868502a9c9982d37c93a545828e3 /controller/fw/git_sucks/levmarq.c | |
parent | d678ae5fbee7c699f81da6de1c23ed3f8615dc6d (diff) | |
download | master-thesis-331ce442c4b8879af41332eebfae14bf29b74fba.tar.gz master-thesis-331ce442c4b8879af41332eebfae14bf29b74fba.tar.bz2 master-thesis-331ce442c4b8879af41332eebfae14bf29b74fba.zip |
foo
Diffstat (limited to 'controller/fw/git_sucks/levmarq.c')
-rw-r--r-- | controller/fw/git_sucks/levmarq.c | 215 |
1 files changed, 215 insertions, 0 deletions
diff --git a/controller/fw/git_sucks/levmarq.c b/controller/fw/git_sucks/levmarq.c new file mode 100644 index 0000000..bbf00c0 --- /dev/null +++ b/controller/fw/git_sucks/levmarq.c @@ -0,0 +1,215 @@ +/* + * levmarq.c + * + * This file contains an implementation of the Levenberg-Marquardt algorithm + * for solving least-squares problems, together with some supporting routines + * for Cholesky decomposition and inversion. No attempt has been made at + * optimization. In particular, memory use in the matrix routines could be + * cut in half with a little effort (and some loss of clarity). + * + * It is assumed that the compiler supports variable-length arrays as + * specified by the C99 standard. + * + * Ron Babich, May 2008 + * + */ + +#include <stdio.h> +#include <math.h> + +#include <arm_math.h> + +#include "levmarq.h" + + +#define TOL 1e-20f /* smallest value allowed in cholesky_decomp() */ + + +/* set parameters required by levmarq() to default values */ +void levmarq_init(LMstat *lmstat) +{ + lmstat->max_it = 10000; + lmstat->init_lambda = 0.0001f; + lmstat->up_factor = 10.0f; + lmstat->down_factor = 10.0f; + lmstat->target_derr = 1e-12f; +} + +float sqrtf(float arg) { + float out=NAN; + arm_sqrt_f32(arg, &out); + return out; +} + +/* perform least-squares minimization using the Levenberg-Marquardt + algorithm. The arguments are as follows: + + npar number of parameters + par array of parameters to be varied + ny number of measurements to be fit + y array of measurements + dysq array of error in measurements, squared + (set dysq=NULL for unweighted least-squares) + func function to be fit + grad gradient of "func" with respect to the input parameters + fdata pointer to any additional data required by the function + lmstat pointer to the "status" structure, where minimization parameters + are set and the final status is returned. + + Before calling levmarq, several of the parameters in lmstat must be set. + For default values, call levmarq_init(lmstat). + */ +int levmarq(int npar, float *par, int ny, float *y, float *dysq, + float (*func)(float *, int, void *), + void (*grad)(float *, float *, int, void *), + void *fdata, LMstat *lmstat) +{ + int x,i,j,it,nit,ill; + float lambda,up,down,mult,weight,err,newerr,derr,target_derr; + float h[npar][npar],ch[npar][npar]; + float g[npar],d[npar],delta[npar],newpar[npar]; + + nit = lmstat->max_it; + lambda = lmstat->init_lambda; + up = lmstat->up_factor; + down = 1/lmstat->down_factor; + target_derr = lmstat->target_derr; + weight = 1; + derr = newerr = 0; /* to avoid compiler warnings */ + + /* calculate the initial error ("chi-squared") */ + err = error_func(par, ny, y, dysq, func, fdata); + + /* main iteration */ + for (it=0; it<nit; it++) { + + /* calculate the approximation to the Hessian and the "derivative" d */ + for (i=0; i<npar; i++) { + d[i] = 0; + for (j=0; j<=i; j++) + h[i][j] = 0; + } + for (x=0; x<ny; x++) { + if (dysq) weight = 1/dysq[x]; /* for weighted least-squares */ + grad(g, par, x, fdata); + for (i=0; i<npar; i++) { + d[i] += (y[x] - func(par, x, fdata))*g[i]*weight; + for (j=0; j<=i; j++) + h[i][j] += g[i]*g[j]*weight; + } + } + + /* make a step "delta." If the step is rejected, increase + lambda and try again */ + mult = 1 + lambda; + ill = 1; /* ill-conditioned? */ + while (ill && (it<nit)) { + for (i=0; i<npar; i++) + h[i][i] = h[i][i]*mult; + + ill = cholesky_decomp(npar, ch, h); + + if (!ill) { + solve_axb_cholesky(npar, ch, delta, d); + for (i=0; i<npar; i++) + newpar[i] = par[i] + delta[i]; + newerr = error_func(newpar, ny, y, dysq, func, fdata); + derr = newerr - err; + ill = (derr > 0); + } + if (ill) { + mult = (1 + lambda*up)/(1 + lambda); + lambda *= up; + it++; + } + } + for (i=0; i<npar; i++) + par[i] = newpar[i]; + err = newerr; + lambda *= down; + + if ((!ill)&&(-derr<target_derr)) break; + } + + lmstat->final_it = it; + lmstat->final_err = err; + lmstat->final_derr = derr; + + return (it==nit); +} + + +/* calculate the error function (chi-squared) */ +float error_func(float *par, int ny, float *y, float *dysq, + float (*func)(float *, int, void *), void *fdata) +{ + int x; + float res,e=0; + + for (x=0; x<ny; x++) { + res = func(par, x, fdata) - y[x]; + if (dysq) /* weighted least-squares */ + e += res*res/dysq[x]; + else + e += res*res; + } + return e; +} + + +/* solve the equation Ax=b for a symmetric positive-definite matrix A, + using the Cholesky decomposition A=LL^T. The matrix L is passed in "l". + Elements above the diagonal are ignored. +*/ +void solve_axb_cholesky(int n, float l[n][n], float x[n], float b[n]) +{ + int i,j; + float sum; + + /* solve L*y = b for y (where x[] is used to store y) */ + + for (i=0; i<n; i++) { + sum = 0; + for (j=0; j<i; j++) + sum += l[i][j] * x[j]; + x[i] = (b[i] - sum)/l[i][i]; + } + + /* solve L^T*x = y for x (where x[] is used to store both y and x) */ + + for (i=n-1; i>=0; i--) { + sum = 0; + for (j=i+1; j<n; j++) + sum += l[j][i] * x[j]; + x[i] = (x[i] - sum)/l[i][i]; + } +} + + +/* This function takes a symmetric, positive-definite matrix "a" and returns + its (lower-triangular) Cholesky factor in "l". Elements above the + diagonal are neither used nor modified. The same array may be passed + as both l and a, in which case the decomposition is performed in place. +*/ +int cholesky_decomp(int n, float l[n][n], float a[n][n]) +{ + int i,j,k; + float sum; + + for (i=0; i<n; i++) { + for (j=0; j<i; j++) { + sum = 0; + for (k=0; k<j; k++) + sum += l[i][k] * l[j][k]; + l[i][j] = (a[i][j] - sum)/l[j][j]; + } + + sum = 0; + for (k=0; k<i; k++) + sum += l[i][k] * l[i][k]; + sum = a[i][i] - sum; + if (sum<TOL) return 1; /* not positive-definite */ + l[i][i] = sqrtf(sum); + } + return 0; +} |