from collections import defaultdict
import dataclasses
from contextlib import contextmanager
import textwrap
import random
import math
from itertools import count, islice
import json
import re
from os import path
import wx
import pcbnew
import matplotlib.cm
import shapely
from shapely import geometry
from shapely.geometry import polygon
from shapely import affinity
import shapely.ops
from . import mesh_plugin_dialog
class GeneratorError(ValueError):
pass
class AbortError(SystemError):
pass
@dataclasses.dataclass
class GeneratorSettings:
edge_clearance: float = 1.5 # mm
anchor: str = None # Footprint designator
chamfer: float = 0.0 # unit fraction
mask_layer_id: int = 0 # kicad layer id, populated later
random_seed: str = None
randomness: float = 1.0
def serialize(self):
d = dataclasses.asdict(self)
d['kimesh_settings_version'] = '2.0.0'
return json.dumps(d).encode()
@classmethod
def deserialize(cls, data):
d = json.loads(data.decode())
version = d.pop('kimesh_settings_version')
vtup = tuple(map(int, version.split('.')))
if vtup > (2, 0, 0):
raise cls.VersionError("Project kimesh settings file is too new for this plugin's version.")
return cls(**d)
class VersionError(ValueError):
pass
class MeshPluginMainDialog(mesh_plugin_dialog.MainDialog):
def __init__(self, board):
mesh_plugin_dialog.MainDialog.__init__(self, None)
self.board = board
self.m_cancelButton.Bind(wx.EVT_BUTTON, self.quit)
self.m_removeButton.Bind(wx.EVT_BUTTON, self.confirm_tearup_mesh)
self.m_generateButton.Bind(wx.EVT_BUTTON, self.generate_mesh)
self.m_net_prefix.Bind(wx.EVT_TEXT, self.update_net_label)
self.tearup_confirm_dialog = wx.MessageDialog(self, "", style=wx.YES_NO | wx.NO_DEFAULT)
self.nets = { str(wxs) for wxs, netinfo in board.GetNetsByName().items() }
self.update_net_label(None)
self.Fit()
settings = None
if path.isfile(self.settings_fn()):
with open(self.settings_fn(), 'rb') as f:
try:
settings = GeneratorSettings.deserialize(f.read())
except (GeneratorSettings.VersionError, TypeError) as e:
wx.MessageDialog(self, "Cannot load settings: {}.".format(e), "File I/O error. Will use default settings.").ShowModal()
for i in range(pcbnew.PCB_LAYER_ID_COUNT):
name = board.GetLayerName(i)
self.m_maskLayerChoice.Append(name)
if name == 'User.Eco1':
self.m_maskLayerChoice.SetSelection(i)
def sort_key(fp):
ref = fp.GetReference()
parts = re.findall(r'[0-9]+|[^0-9]+', ref)
return tuple(int(part) if part.isnumeric() else part for part in parts)
self.fps = sorted(self.board.Footprints(), key=sort_key)
for i, fp in enumerate(self.fps):
ref = fp.GetReference()
self.m_anchorChoice.Append(ref)
if settings and ref == settings.anchor:
self.m_anchorChoice.SetSelection(i)
if settings:
self.m_chamferSpin.Value = settings.chamfer*100.0
self.m_maskLayerChoice.SetSelection(settings.mask_layer_id)
self.m_seedInput.Value = settings.random_seed or ''
self.m_randomnessSpin.Value = settings.randomness*100.0
self.m_edgeClearanceSpin.Value = settings.edge_clearance
self.SetMinSize(self.GetSize())
def get_matching_nets(self):
prefix = self.m_net_prefix.Value
return { net for net in self.nets if net.startswith(prefix) }
def confirm_tearup_mesh(self, evt):
matching = self.get_matching_nets()
if not str(self.m_net_prefix.Value):
message = "You have set an empty net prefix. This will match ALL {} nets on the board. Do you really want to tear up all tracks? This cannot be undone!"
else:
message = "Do you really want to tear up all traces of the {} matching nets on this board? This step cannot be undone!"
message = message.format(len(matching)) + "\n\nMatching nets:\n" + ", ".join(
'""' if not netname else (netname[:16] + '...' if len(netname) > 16 else netname)
for netname in (sorted(matching)[:5] + ['...'] if len(matching) > 5 else [])
)
self.tearup_confirm_dialog.SetMessage(message)
self.tearup_confirm_dialog.SetYesNoLabels("Tear up {} traces".format(len(matching)), "Close")
if self.tearup_confirm_dialog.ShowModal() == wx.ID_YES:
self.tearup_mesh(matching)
def tearup_mesh(self, matching=None):
count = 0
anchor, target_layer_id = self.get_anchor()
for track in self.board.GetTracks():
if matching is not None and track.GetNet().GetNetname() not in matching:
continue
if track.GetLayer() != target_layer_id:
continue
count += 1
self.board.Remove(track)
print(f'Tore up {count} trace segments.')
def settings_fn(self):
return path.join(path.dirname(self.board.GetFileName()), 'last_kimesh_settings.json')
def get_anchor(self):
ref = str(self.fps[self.m_anchorChoice.GetSelection()].GetReference())
footprints = [ fp for fp in self.board.Footprints() if fp.GetReference() == ref ]
if len(footprints) == 0:
wx.MessageDialog(self, f'Error: Could not find anchor footprint "{ref}".').ShowModal()
raise ValueError()
if len(footprints) > 1:
wx.MessageDialog(self, f'Error: Multiple footprints with anchor footprint reference "{ref}".').ShowModal()
raise ValueError()
anchor = footprints[0]
pad0, *_ = anchor.Pads()
lset = pad0.GetLayerSet()
target_layer_id, *_ = [l for l in lset.CuStack() if lset.Contains(l)]
return anchor, target_layer_id
def generate_mesh(self, evt):
try:
settings = GeneratorSettings(
edge_clearance = float(self.m_edgeClearanceSpin.Value),
anchor = str(list(self.board.Footprints())[self.m_anchorChoice.GetSelection()].GetReference()),
chamfer = float(self.m_chamferSpin.Value)/100.0,
mask_layer_id = self.m_maskLayerChoice.GetSelection(),
random_seed = str(self.m_seedInput.Value) or None,
randomness = float(self.m_randomnessSpin.Value)/100.0)
except ValueError as e:
return wx.MessageDialog(self, "Invalid input value: {}.".format(e), "Invalid input").ShowModal()
try:
with open(self.settings_fn(), 'wb') as f:
f.write(settings.serialize())
print('Saved settings to', f.name)
except:
wx.MessageDialog(self, "Cannot save settings: {}.".format(e), "File I/O error").ShowModal()
anchor, target_layer_id = self.get_anchor()
mesh_zones = []
for drawing in self.board.GetDrawings():
if drawing.GetLayer() == settings.mask_layer_id:
mesh_zones.append(drawing.GetPolyShape())
if not mesh_zones:
return wx.MessageDialog(self, "Error: Could not find any mesh zones on the outline pattern layer.").ShowModal()
keepouts = []
for zone in self.board.Zones():
if zone.GetDoNotAllowCopperPour() and zone.GetLayerSet().Contains(target_layer_id):
keepouts.append(zone.Outline())
print(f'Found {len(keepouts)} keepout areas.')
outlines = pcbnew.SHAPE_POLY_SET()
self.board.GetBoardPolygonOutlines(outlines)
board_outlines = list(self.poly_set_to_shapely(outlines))
board_mask = shapely.ops.unary_union(board_outlines)
board_mask = board_mask.buffer(-settings.edge_clearance)
print('board outline bounds:', board_mask.bounds)
if board_mask.is_empty:
return wx.MessageDialog(self, "Error: Could not find the board outline, or board edge clearance is set too high.").ShowModal()
zone_outlines = [ outline for zone in mesh_zones for outline in self.poly_set_to_shapely(zone) ]
zone_mask = shapely.ops.unary_union(zone_outlines)
if zone_mask.is_empty:
mask = board_mask
else:
mask = zone_mask.intersection(board_mask)
print('Mesh mask bounds:', zone_mask.bounds)
keepout_outlines = [ outline for zone in keepouts for outline in self.poly_set_to_shapely(zone) ]
keepout_mask = shapely.ops.unary_union(keepout_outlines)
if not keepout_mask.is_empty:
mask = shapely.difference(mask, keepout_mask)
print('keepout mask bounds:', keepout_mask.bounds)
print('resulting mask bounds:', mask.bounds)
try:
def warn(msg):
dialog = wx.MessageDialog(self, msg + '\n\nDo you want to abort mesh generation?',
"Mesh Generation Warning").ShowModal()
dialog = wx.MessageDialog(self, "", style=wx.YES_NO | wx.NO_DEFAULT)
dialog.SetYesNoLabels("Abort", "Ignore and continue")
if self.tearup_confirm_dialog.ShowModal() == wx.ID_YES:
raise AbortError()
self.generate_mesh_backend(mask, anchor, net_prefix=str(self.m_net_prefix.Value), target_layer_id=target_layer_id, warn=warn, settings=settings)
except GeneratorError as e:
return wx.MessageDialog(self, str(e), "Mesh Generation Error").ShowModal()
except AbortError:
pass
def poly_set_to_shapely(self, poly_set):
for i in range(poly_set.OutlineCount()):
outline = poly_set.Outline(i)
def shape_line_chain_to_coords(line_chain):
points = []
for j in range(line_chain.PointCount()):
point = line_chain.CPoint(j)
points.append((pcbnew.ToMM(point.x), pcbnew.ToMM(point.y)))
return points
exterior = shape_line_chain_to_coords(outline)
interiors = [ shape_line_chain_to_coords(poly_set.Hole(i, j)) for j in range(poly_set.HoleCount(i)) ]
yield polygon.Polygon(exterior, interiors)
def generate_mesh_backend(self, mask, anchor, net_prefix, target_layer_id, warn=lambda s: None, settings=GeneratorSettings()):
anchor_outlines = list(self.poly_set_to_shapely(anchor.GetBoundingHull()))
if len(anchor_outlines) == 0:
raise GeneratorError('Could not find any outlines for anchor {}'.format(anchor.GetReference()))
if len(anchor_outlines) > 1:
warn('Anchor {} has multiple outlines. Using first outline for trace start.')
anchor_pads = list(sorted(anchor.Pads(), key=lambda pad: int(pad.GetNumber())))
trace_width = pcbnew.ToMM(anchor_pads[0].GetSize()[0])
space_width = pcbnew.ToMM(math.dist(anchor_pads[0].GetPosition(), anchor_pads[1].GetPosition())) - trace_width
num_traces = len(anchor_pads)
assert num_traces%4 == 0
num_traces //= 4
nets = [f'{net_prefix}{i}' for i in range(num_traces)]
width_per_trace = trace_width + space_width
grid_cell_width = width_per_trace * num_traces * 2
print(f'mesh cell size is {grid_cell_width}')
x0, y0 = anchor_pads[len(anchor_pads)//2].GetPosition()
x0, y0 = pcbnew.ToMM(x0), pcbnew.ToMM(y0)
xl, yl = anchor_pads[-1].GetPosition()
xl, yl = pcbnew.ToMM(xl), pcbnew.ToMM(yl)
mesh_angle = math.atan2(xl-x0, yl-y0)
print('mesh angle is', math.degrees(mesh_angle))
len_along = - width_per_trace/2
x0 += len_along * math.sin(mesh_angle)
y0 += len_along * math.cos(mesh_angle)
mask_xformed = affinity.translate(mask, -x0, -y0)
mask_xformed = affinity.rotate(mask_xformed, -mesh_angle, origin=(0, 0), use_radians=True)
bbox = mask_xformed.bounds
grid_x0, grid_y0 = math.floor(bbox[0]/grid_cell_width), math.floor(bbox[1]/grid_cell_width)
grid_origin = grid_x0*grid_cell_width, grid_y0*grid_cell_width
grid_rows = int(math.ceil((bbox[3] - grid_origin[1]) / grid_cell_width))
grid_cols = int(math.ceil((bbox[2] - grid_origin[0]) / grid_cell_width))
print(f'generating grid of size {grid_rows} * {grid_cols} with origin {grid_x0}, {grid_y0}')
grid = []
for y in range(grid_y0, grid_y0+grid_rows):
row = []
for x in range(grid_x0, grid_x0+grid_cols):
cell = polygon.Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
cell = affinity.scale(cell, grid_cell_width, grid_cell_width, origin=(0, 0))
cell = affinity.translate(cell, x*grid_cell_width, y*grid_cell_width)
cell = affinity.rotate(cell, mesh_angle, origin=(0, 0), use_radians=True)
cell = affinity.translate(cell, x0, y0)
row.append(cell)
grid.append(row)
num_valid = 0
with DebugOutput('dbg_grid.svg') as dbg:
dbg.add(mask, color='#00000020')
for y, row in enumerate(grid, start=grid_y0):
for x, cell in enumerate(row, start=grid_x0):
if mask.contains(cell):
if x == 0 and y == 0: # exit cell
color = '#ff00ff80'
else:
num_valid += 1
color = '#00ff0080'
elif mask.overlaps(cell):
color = '#ffff0080'
else:
color = '#ff000080'
dbg.add(cell, color=color)
for foo in anchor_outlines:
dbg.add(foo, color='#0000ff00', stroke_width=0.05, stroke_color='#000000ff')
dbg.add([[(x0-2, y0), (x0+2, y0)], [(x0, y0-2), (x0, y0+2)]], color='none', stroke_width=0.05, stroke_color='#ff0000ff')
def is_valid(cell):
if not mask.contains(cell):
return False
return True
def iter_neighbors(x, y):
if x > grid_x0:
yield x-1, y, 0b0100
if x - grid_x0 < grid_cols:
yield x+1, y, 0b0001
if y > grid_y0:
yield x, y-1, 0b1000
if y - grid_y0 < grid_rows:
yield x, y+1, 0b0010
def reciprocal(mask):
return {
0b0001: 0b0100,
0b0010: 0b1000,
0b0100: 0b0001,
0b1000: 0b0010,
0b0000: 0b0000
}[mask]
rnd_state = random.Random(settings.random_seed)
def skewed_random_iter(it, mask, randomness):
l = list(it)
if rnd_state.random() < 1.0 - randomness:
for x, y, m in l:
if m == mask:
yield x, y, m
break
l.remove((x, y, m))
rnd_state.shuffle(l)
yield from l
def add_track(segment:geometry.LineString, net=None):
coords = list(segment.coords)
for (x1, y1), (x2, y2) in zip(coords, coords[1:]):
if (x1, y1) == (x2, y2): # zero-length track due to zero chamfer
continue
track = pcbnew.PCB_TRACK(self.board)
#track.SetStatus(track.GetStatus() | pcbnew.TRACK_AR)
track.SetStart(pcbnew.VECTOR2I(pcbnew.FromMM(x1), pcbnew.FromMM(y1)))
track.SetEnd(pcbnew.VECTOR2I(pcbnew.FromMM(x2), pcbnew.FromMM(y2)))
track.SetWidth(pcbnew.FromMM(trace_width))
track.SetLayer(target_layer_id)
if net is not None:
track.SetNet(net)
self.board.Add(track)
netinfos = []
for name in nets:
ni = pcbnew.NETINFO_ITEM(self.board, name)
self.board.Add(ni)
netinfos.append(ni)
not_visited = { (x, y) for x in range(grid_x0, grid_x0+grid_cols) for y in range(grid_y0, grid_y0+grid_rows) if is_valid(grid[y-grid_y0][x-grid_x0]) }
num_to_visit = len(not_visited)
track_count = 0
with DebugOutput('dbg_cells.svg') as dbg_cells,\
DebugOutput('dbg_composite.svg') as dbg_composite,\
DebugOutput('dbg_tiles.svg') as dbg_tiles,\
DebugOutput('dbg_traces.svg') as dbg_traces:
dbg_cells.add(mask, color='#00000020')
dbg_composite.add(mask, color='#00000020')
dbg_traces.add(mask, color='#00000020')
dbg_tiles.add(mask, color='#00000020')
TILE_COLORS = {
0b0000: '#ffcc00ff',
0b0001: '#d40000ff',
0b0010: '#d40000ff',
0b0011: '#ff6600ff',
0b0100: '#d40000ff',
0b0101: '#00d400ff',
0b0110: '#ff6600ff',
0b0111: '#00ccffff',
0b1000: '#d40000ff',
0b1001: '#ff6600ff',
0b1010: '#00d400ff',
0b1011: '#00ccffff',
0b1100: '#ff6600ff',
0b1101: '#00ccffff',
0b1110: '#00ccffff',
0b1111: '#ffcc00ff'}
x, y = -1, 0
visited = 0
key = 0
entry_dir = 0b0001
stack = []
depth = 0
max_depth = 0
i = 0
past_tiles = {}
def dump_output(i):
with DebugOutput(f'per-tile/step{i}.svg') as dbg_per_tile:
dbg_per_tile.add(mask, color='#00000020')
for foo in anchor_outlines:
dbg_per_tile.add(foo, color='#00000080', stroke_width=0.05, stroke_color='#00000000')
for le_y, row in enumerate(grid):
for le_x, cell in enumerate(row):
if mask.contains(cell):
if cell == exit_cell[0]:
color = '#ff00ff80'
elif any(ol.overlaps(cell) for ol in anchor_outlines):
color = '#ffff0080'
elif any(ol.contains(cell) for ol in anchor_outlines):
color = '#ff000080'
else:
color = '#00ff0080'
elif mask.overlaps(cell):
color = '#ffff0080'
else:
color = '#ff000080'
dbg_per_tile.add(cell, color=color)
for (le_x, le_y), (stroke_color, segments) in past_tiles.items():
for segment in segments:
segment = affinity.scale(segment, grid_cell_width, grid_cell_width, origin=(0, 0))
segment = affinity.translate(segment, le_x*grid_cell_width, le_y*grid_cell_width)
segment = affinity.rotate(segment, mesh_angle, origin=(0, 0), use_radians=True)
segment = affinity.translate(segment, x0, y0)
dbg_per_tile.add(segment, stroke_width=trace_width, color='#ff000000', stroke_color=stroke_color)
armed = False
while not_visited or stack:
for n_x, n_y, bmask in skewed_random_iter(iter_neighbors(x, y), entry_dir, settings.randomness):
if (n_x, n_y) in not_visited:
dbg_composite.add(grid[n_y-grid_y0][n_x-grid_x0], color=('visit_depth', depth), opacity=1.0)
dbg_cells.add(grid[n_y-grid_y0][n_x-grid_x0], color=('visit_depth', depth), opacity=1.0)
key |= bmask
stack.append((x, y, key, bmask, depth))
not_visited.remove((n_x, n_y))
visited += 1
depth += 1
i += 1
armed = True
max_depth = max(depth, max_depth)
past_tiles[x, y] = (TILE_COLORS[key],
[segment
for segment, _net in Pattern.render(key, num_traces, settings.chamfer) ])
x, y, key, entry_dir = n_x, n_y, reciprocal(bmask), bmask
#dump_output(i)
break
else:
stroke_color = TILE_COLORS[key]
past_tiles[x, y] = (stroke_color,
[segment for segment, _net in Pattern.render(key, num_traces, settings.chamfer) ])
for segment, net in Pattern.render(key, num_traces, settings.chamfer):
if is_valid(grid[y-grid_y0][x-grid_x0]):
segment = affinity.scale(segment, grid_cell_width, grid_cell_width, origin=(0, 0))
segment = affinity.translate(segment, x*grid_cell_width, y*grid_cell_width)
segment = affinity.rotate(segment, mesh_angle, origin=(0, 0), use_radians=True)
segment = affinity.translate(segment, x0, y0)
dbg_composite.add(segment, stroke_width=trace_width, color='#ff000000', stroke_color='#ffffff60')
dbg_traces.add(segment, stroke_width=trace_width, color='#ff000000', stroke_color='#000000ff')
dbg_tiles.add(segment, stroke_width=trace_width, color='#ff000000', stroke_color=stroke_color)
add_track(segment, netinfos[net]) # FIXME (works, disabled for debug)
track_count += 1
if not stack:
break
if armed:
i += 1
#dump_output(i)
armed = False
*stack, (x, y, key, entry_dir, depth) = stack
dbg_cells.scale_colors('visit_depth', max_depth)
dbg_composite.scale_colors('visit_depth', max_depth)
for foo in anchor_outlines:
dbg_cells.add(foo, color='#00000080', stroke_width=0.05, stroke_color='#00000000')
dbg_traces.add(foo, color='#00000080', stroke_width=0.05, stroke_color='#00000000')
dbg_composite.add(foo, color='#00000080', stroke_width=0.05, stroke_color='#00000000')
dbg_tiles.add(foo, color='#00000080', stroke_width=0.05, stroke_color='#00000000')
print(f'Added {track_count} trace segments.')
#pcbnew.Refresh()
#self.tearup_mesh()
# TODO generate
def update_net_label(self, evt):
self.m_netLabel.SetLabel('Like: ' + ', '.join(f'{self.m_net_prefix.Value}{i}' for i in range(3)) + ', ...')
def quit(self, evt):
self.Destroy()
class Pattern:
@staticmethod
def render(key, n, cd=0):
yield from Pattern.LUT[key](n, cd=math.tan(math.pi/8) * cd)
def draw_I(n, cd):
for i in range(n):
sp = (i+0.5) * (1/(2*n))
yield geometry.LineString([(sp, 0), (sp, 1)]), i
sp = (2*n-1-i+0.5) * (1/(2*n))
yield geometry.LineString([(sp, 0), (sp, 1)]), i
def draw_U(n, cd):
pitch = (1/(2*n))
cd *= pitch # chamfer depth
for i in range(n):
sp = (i+0.5) * pitch
yield geometry.LineString([(sp, 0), (sp, 1-sp-cd), (sp+cd, 1-sp), (1-sp-cd, 1-sp), (1-sp, 1-sp-cd), (1-sp, 0)]), i
def draw_L(n, cd):
pitch = (1/(2*n))
cd *= pitch # chamfer depth
for i in range(n):
sp = (i+0.5) * pitch
yield geometry.LineString([(sp, 0), (sp, 1-sp-cd), (sp+cd, 1-sp), (1, 1-sp)]), i
sp = (2*n-1-i+0.5) * pitch
yield geometry.LineString([(sp, 0), (sp, 1-sp-cd), (sp+cd, 1-sp), (1, 1-sp)]), i
def draw_T(n, cd):
pitch = (1/(2*n))
cd *= pitch # chamfer depth
for i in range(n):
sp = (i+0.5) * pitch
# through line
yield geometry.LineString([(0, sp), (1, sp)]), i
# two corners on the opposite side
yield geometry.LineString([(0, 1-sp), (sp-cd, 1-sp), (sp, 1-sp+cd), (sp, 1)]), i
yield geometry.LineString([(1-sp, 1), (1-sp, 1-sp+cd), (1-sp+cd, 1-sp), (1, 1-sp)]), i
def draw_X(n, cd):
pitch = (1/(2*n))
cd *= pitch # chamfer depth
for i in range(n):
sp = (i+0.5) * pitch
yield geometry.LineString([(0, sp), (sp-cd, sp), (sp, sp-cd), (sp, 0)]), i
yield geometry.LineString([(1-sp, 0), (1-sp, sp-cd), (1-sp+cd, sp), (1, sp)]), i
yield geometry.LineString([(0, 1-sp), (sp-cd, 1-sp), (sp, 1-sp+cd), (sp, 1)]), i
yield geometry.LineString([(1-sp, 1), (1-sp, 1-sp+cd), (1-sp+cd, 1-sp), (1, 1-sp)]), i
def rotate(pattern, deg):
def wrapper(n, *args, **kwargs):
for segment, net in pattern(n, *args, **kwargs):
yield affinity.rotate(segment, deg, origin=(0.5, 0.5)), net
return wrapper
def raise_error(n, *args, **kwargs):
#raise ValueError('Tried to render invalid cell. This is a bug.')
return []
LUT = {
0b0000: raise_error,
0b0001: rotate(draw_U, 90),
0b0010: rotate(draw_U, 180),
0b0011: rotate(draw_L, 90),
0b0100: rotate(draw_U, -90),
0b0101: rotate(draw_I, -90),
0b0110: rotate(draw_L, 180),
0b0111: draw_T,
0b1000: draw_U,
0b1001: draw_L,
0b1010: draw_I,
0b1011: rotate(draw_T, -90),
0b1100: rotate(draw_L, -90),
0b1101: rotate(draw_T, 180),
0b1110: rotate(draw_T, 90),
0b1111: draw_X
}
def virihex(val, max=1.0, alpha=1.0):
r, g, b, _a = matplotlib.cm.viridis(val/max)
r, g, b, a = [ int(round(0xff*c)) for c in [r, g, b, alpha] ]
return f'#{r:02x}{g:02x}{b:02x}{a:02x}'
@contextmanager
def DebugOutput(filename):
with open(filename, 'w') as f:
wrapper = DebugOutputWrapper(f)
yield wrapper
wrapper.save()
class DebugOutputWrapper:
def __init__(self, f):
self.f = f
self.objs = []
def scale_colors(self, group, max_value):
self.objs = [
(obj,
(virihex(color[1], max=max_value) if isinstance(color, tuple) and color[0] == group else color,
*rest))
for obj, (color, *rest) in self.objs ]
def add(self, obj, color=None, stroke_width=0, stroke_color=None, opacity=1.0):
self.objs.append((obj, (color, stroke_color, stroke_width, opacity)))
def gen_svg(self, obj, fill_color=None, stroke_color=None, stroke_width=None, opacity=1.0):
fill_color = fill_color or '#ff0000aa'
stroke_color = stroke_color or '#000000ff'
stroke_width = 0 if stroke_width is None else stroke_width
if isinstance(obj, geometry.MultiPolygon):
out = ''
for geom in obj.geoms:
out += self.gen_svg(geom, fill_color, stroke_color, stroke_width, opacity)
return out
elif isinstance(obj, polygon.Polygon):
exterior_coords = [ ["{},{}".format(*c) for c in obj.exterior.coords] ]
interior_coords = [ ["{},{}".format(*c) for c in interior.coords] for interior in obj.interiors ]
all_coords = exterior_coords + interior_coords
path = " ".join([
"M {0} L {1} z".format(coords[0], " L ".join(coords[1:]))
for coords in all_coords])
elif isinstance(obj, geometry.LineString):
all_coords = [ ["{},{}".format(*c) for c in obj.coords] ]
path = " ".join([
"M {0} L {1}".format(coords[0], " L ".join(coords[1:]))
for coords in all_coords])
elif isinstance(obj, list):
all_coords = [ [f'{x},{y}' for x, y in seg] for seg in obj ]
path = " ".join([
"M {0} L {1}".format(coords[0], " L ".join(coords[1:]))
for coords in all_coords])
else:
raise ValueError(f'Unhandled shapely object type {type(obj)}')
return (f'')
def save(self, margin:'unit'=5, scale:'px/unit'=10):
#specify margin in coordinate units
margin = 5
bboxes = [ list(obj.bounds) for obj, _style in self.objs if not isinstance(obj, list) ]
min_x = min( bbox[0] for bbox in bboxes ) - margin
min_y = min( bbox[1] for bbox in bboxes ) - margin
max_x = max( bbox[2] for bbox in bboxes ) + margin
max_y = max( bbox[3] for bbox in bboxes ) + margin
width = max_x - min_x
height = max_y - min_y
props = {
'version': '1.1',
'baseProfile': 'full',
'width': '{width:.0f}px'.format(width = width*scale),
'height': '{height:.0f}px'.format(height = height*scale),
'viewBox': '%.1f,%.1f,%.1f,%.1f' % (min_x, min_y, width, height),
'xmlns': 'http://www.w3.org/2000/svg',
'xmlns:ev': 'http://www.w3.org/2001/xml-events',
'xmlns:xlink': 'http://www.w3.org/1999/xlink'
}
if self.f is not None:
self.f.write(textwrap.dedent(r'''
''').format(
attrs = ' '.join(['{key:s}="{val:s}"'.format(key = key, val = props[key]) for key in props]),
data = '\n'.join(self.gen_svg(obj, *style) for obj, style in self.objs)
).strip())
def show_dialog(board):
dialog = MeshPluginMainDialog(board)
dialog.ShowModal()
return dialog