summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--prototype/sensor-analysis/Accelerometer Data Analysis.ipynb3360
-rwxr-xr-xprototype/sensor-analysis/test_run.sqlite3bin114688 -> 4272128 bytes
2 files changed, 3247 insertions, 113 deletions
diff --git a/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb b/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
index f25f4cb..75f0751 100644
--- a/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
+++ b/prototype/sensor-analysis/Accelerometer Data Analysis.ipynb
@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 182,
+ "execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@@ -16,6 +16,8 @@
"import scipy.fftpack\n",
"import scipy.signal\n",
"from matplotlib import pyplot as plt\n",
+ "from matplotlib import ticker\n",
+ "import matplotlib.dates\n",
"import scipy.optimize\n",
"%matplotlib notebook"
]
@@ -38,7 +40,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Last run was ID #2 with 1759 packets total, 504 distinct over 409.4534661769867s\n"
+ "Last run was ID #42 with 1745 packets total, 256 distinct over 217.80828976631165s\n"
]
}
],
@@ -53,7 +55,17 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Override\n",
+ "last_run = 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
@@ -64,10 +76,8 @@
},
{
"cell_type": "code",
- "execution_count": 201,
- "metadata": {
- "scrolled": false
- },
+ "execution_count": 41,
+ "metadata": {},
"outputs": [
{
"data": {
@@ -1030,7 +1040,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -1042,45 +1052,22 @@
{
"data": {
"text/plain": [
- "[<matplotlib.lines.Line2D at 0x7f9ceadd2610>]"
+ "[<matplotlib.lines.Line2D at 0x7f3e53e41670>]"
]
},
- "execution_count": 201,
+ "execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fig, ax = plt.subplots()\n",
- "ax.grid()\n",
- "ax.plot(sorted(deltas)[:-2])"
+ "ax.plot(deltas)"
]
},
{
"cell_type": "code",
- "execution_count": 72,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Average speed of rotation: 7.94 Hz / 476 rpm\n"
- ]
- }
- ],
- "source": [
- "def fun(x, args):\n",
- " deltas, = args # poor api\n",
- " return np.sqrt(np.mean([ ((val + 0.5*x[0]) % x[0] - 0.5*x[0])**2 for val in deltas ]))\n",
- "res = scipy.optimize.minimize(fun, 0.1, args=[sorted(deltas)[:-2]])\n",
- "interval = np.abs(res.x[0])\n",
- "print(f'Average speed of rotation: {1/interval:.2f} Hz / {60 / interval:.0f} rpm')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 78,
+ "execution_count": 42,
"metadata": {},
"outputs": [
{
@@ -1100,25 +1087,26 @@
},
{
"cell_type": "code",
- "execution_count": 97,
+ "execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Very approximate lower bound on baudrate: 92476.55870407648 bd\n"
+ "Very approximate lower bound on baudrate: 129032.25806451612 bd\n"
]
}
],
"source": [
- "approx_baudrate = 1.0 / (np.mean([ x for x in deltas if x < interval*0.1 ]) / (packet_len*10))\n",
+ "#approx_baudrate = 1.0 / (np.mean([ x for x in deltas if x < interval*0.02]) / (packet_len*10))\n",
+ "approx_baudrate = 1.0 / (0.0031 / (packet_len*10))\n",
"print(f'Very approximate lower bound on baudrate: {approx_baudrate} bd')"
]
},
{
"cell_type": "code",
- "execution_count": 152,
+ "execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
@@ -1131,48 +1119,11 @@
},
{
"cell_type": "code",
- "execution_count": 154,
+ "execution_count": 45,
"metadata": {
"scrolled": false
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "BUG: Duplicate sequence number\n",
- "Sequence number: 241\n",
- " (-53, -80, -12, 44, 11, -67, -61, 5, 47, -7, -74, -59, 15, 50, -18, -80)\n",
- " (43, 52, -14, -63, -32, 45, 60, -8, -59, -25, 44, 67, -1, -61, -25, 36)\n",
- "BUG: Duplicate sequence number\n",
- "Sequence number: 242\n",
- " (-59, -25, 44, 67, -1, -61, -25, 36, 72, -2, -54, 6, 96, 98, 26, -20)\n",
- " (47, -7, -74, -59, 15, 50, -18, -80, -49, 28, 31, -38, -86, -41, 36, 27)\n",
- "BUG: Duplicate sequence number\n",
- "Sequence number: 243\n",
- " (-49, 28, 31, -38, -86, -41, 36, 27, -50, -74, -18, 39, 26, -61, -74, -1)\n",
- " (72, -2, -54, 6, 96, 98, 26, -20, 21, 88, 73, -14, -26, 50, 95, 54)\n",
- "BUG: Duplicate sequence number\n",
- "Sequence number: 244\n",
- " (-50, -74, -18, 39, 26, -61, -74, -1, 53, 5, -67, -61, 8, 38, -13, -74)\n",
- " (21, 88, 73, -14, -26, 50, 95, 54, -32, -24, 22, 92, 30, -29, -8, 62)\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "<ipython-input-154-25bc058f475a>:7: UserWarning: BUG: Duplicate sequence number 241 for 2 payloads!\n",
- " warnings.warn(f'BUG: Duplicate sequence number {seq} for {len(set(le_packets))} payloads!')\n",
- "<ipython-input-154-25bc058f475a>:7: UserWarning: BUG: Duplicate sequence number 242 for 2 payloads!\n",
- " warnings.warn(f'BUG: Duplicate sequence number {seq} for {len(set(le_packets))} payloads!')\n",
- "<ipython-input-154-25bc058f475a>:7: UserWarning: BUG: Duplicate sequence number 243 for 2 payloads!\n",
- " warnings.warn(f'BUG: Duplicate sequence number {seq} for {len(set(le_packets))} payloads!')\n",
- "<ipython-input-154-25bc058f475a>:7: UserWarning: BUG: Duplicate sequence number 244 for 2 payloads!\n",
- " warnings.warn(f'BUG: Duplicate sequence number {seq} for {len(set(le_packets))} payloads!')\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"# group packets by sequence number\n",
"by_seq = { k: list(g) for k, g in itertools.groupby(packets, key=lambda x: x[0]) }\n",
@@ -1189,14 +1140,14 @@
},
{
"cell_type": "code",
- "execution_count": 155,
+ "execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Sequence number range: 1 ... 510\n"
+ "Sequence number range: 739 ... 1457\n"
]
}
],
@@ -1207,18 +1158,22 @@
},
{
"cell_type": "code",
- "execution_count": 166,
+ "execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"# FIXME this is only approximate, doesn't consider sequence numbers properly!!!\n",
- "reassembled_values = np.array([ val for (_seq, values), *_rest in by_seq.values() for val in values[:8] ])"
+ "# Negate values: Our sensor is mounted such that -X points outwards,\n",
+ "# so by negating we get larger centrifugal force -> higher value\n",
+ "reassembled_values = np.array([ -val for (_seq, values), *_rest in by_seq.values() for val in values[:8] ])"
]
},
{
"cell_type": "code",
- "execution_count": 206,
- "metadata": {},
+ "execution_count": 97,
+ "metadata": {
+ "scrolled": false
+ },
"outputs": [
{
"data": {
@@ -2181,7 +2136,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -2191,23 +2146,87 @@
"output_type": "display_data"
},
{
- "data": {
- "text/plain": [
- "Text(0, 0.5, '$a\\\\; [ms^{-1}]$')"
- ]
- },
- "execution_count": 206,
- "metadata": {},
- "output_type": "execute_result"
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Found sensor offset: 0.57 g / 5.55 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 2.16 g / 21.14 m/s^2\n",
+ " Measurement: 1.90 g / 18.586194313627637 m/s^2\n",
+ " Rel. Error: 13.72 %\n",
+ " Abs. Error: 0.26 g / 2.55 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 6.82 g / 66.88 m/s^2\n",
+ " Measurement: 6.60 g / 64.67817413725541 m/s^2\n",
+ " Rel. Error: 3.41 %\n",
+ " Abs. Error: 0.22 g / 2.20 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 14.89 g / 146.00 m/s^2\n",
+ " Measurement: 14.82 g / 145.35641444809548 m/s^2\n",
+ " Rel. Error: 0.44 %\n",
+ " Abs. Error: 0.07 g / 0.64 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 23.04 g / 225.90 m/s^2\n",
+ " Measurement: 23.11 g / 226.6766272456559 m/s^2\n",
+ " Rel. Error: -0.34 %\n",
+ " Abs. Error: -0.08 g / -0.77 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 34.60 g / 339.27 m/s^2\n",
+ " Measurement: 34.80 g / 341.26606334638393 m/s^2\n",
+ " Rel. Error: -0.59 %\n",
+ " Abs. Error: -0.20 g / -2.00 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 53.88 g / 528.41 m/s^2\n",
+ " Measurement: 51.75 g / 507.51233891199473 m/s^2\n",
+ " Rel. Error: 4.12 %\n",
+ " Abs. Error: 2.13 g / 20.90 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 81.62 g / 800.43 m/s^2\n",
+ " Measurement: 82.09 g / 805.0345119987545 m/s^2\n",
+ " Rel. Error: -0.57 %\n",
+ " Abs. Error: -0.47 g / -4.60 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 29.79 g / 292.17 m/s^2\n",
+ " Measurement: 29.71 g / 291.36536349393447 m/s^2\n",
+ " Rel. Error: 0.28 %\n",
+ " Abs. Error: 0.08 g / 0.81 m/s^2\n",
+ "\n",
+ "Centrifugal acceleration at 6.49 Hz:\n",
+ " Theory: 9.33 g / 91.46 m/s^2\n",
+ " Measurement: 9.21 g / 90.28568973827844 m/s^2\n",
+ " Rel. Error: 1.30 %\n",
+ " Abs. Error: 0.12 g / 1.17 m/s^2\n",
+ "\n"
+ ]
}
],
"source": [
+ "sampling_rate = 10 # sps, set in firmware\n",
"mems_lsb_per_g = 68 # LSBs per 1g for our accelerometer\n",
"\n",
+ "ivl_start, ivl_end = 0.5, 1\n",
+ "ivl_start, ivl_end = int(ivl_start*60*sampling_rate), int(ivl_end*60*sampling_rate)\n",
+ "\n",
"fig, ax = plt.subplots()\n",
- "ax.plot(reassembled_values / mems_lsb_per_g )\n",
+ "#ax.axvspan(ivl_start/60/sampling_rate, ivl_end/60/sampling_rate, color='orange', alpha=0.5)\n",
+ "\n",
"ax.grid()\n",
"\n",
+ "ts = np.arange(0, len(reassembled_values)) / sampling_rate / 60\n",
+ "ax.plot(ts, reassembled_values / mems_lsb_per_g, color='darkblue', alpha=0.2)\n",
+ "#ax.plot(ts, scipy.signal.savgol_filter(reassembled_values / mems_lsb_per_g, 21, 2) )\n",
+ "sos = scipy.signal.butter(8, 0.5, 'lp', fs=10, output='sos')\n",
+ "filtered = scipy.signal.sosfiltfilt(sos, reassembled_values / mems_lsb_per_g)\n",
+ "ax.plot(ts, filtered, color='darkblue')\n",
+ "\n",
"g = 9.8066\n",
"g_to_ms = lambda x: x * g\n",
"ms_to_g = lambda x: x / g\n",
@@ -2215,19 +2234,1097 @@
"ax.set_ylabel(r'$a\\; [g]$')\n",
"secax_y = ax.secondary_yaxis(\n",
" 'right', functions=(g_to_ms, ms_to_g))\n",
- "secax_y.set_ylabel(r'$a\\; [ms^{-1}]$')"
+ "secax_y.set_ylabel(r'$a\\; [ms^{-1}]$')\n",
+ "\n",
+ "formatter = ticker.FuncFormatter(lambda tick, _pos: f'{int(tick):02d}:{tick*60%60:02.0f}')\n",
+ "ax.xaxis.set_major_formatter(formatter)\n",
+ "\n",
+ "r_mems = 55e-3 # radius of our sensor from the axis of rotation in m\n",
+ "le_data = [(0, 50, 3.12), (1,50,5.55), (2,40, 8.2), (3, 30, 10.2), (4,15, 12.5), (5,10, 15.6),\n",
+ " (6,10, 19.2), (7,11, 11.6), (8,15, 6.49)]\n",
+ "avg_include = [True, True, True, True, True, False, True, True, True]\n",
+ "acc_theory = []\n",
+ "acc_meas = []\n",
+ "\n",
+ "for ts_m, ts_s, f_actual in le_data:\n",
+ " omegan = 2*np.pi*f_actual # angular velocity\n",
+ " acc = omegan**2 * r_mems # m/s^2\n",
+ " acc_theory.append(acc / g)\n",
+ " \n",
+ " ts_abs = ts_m + ts_s/60\n",
+ " ivl_w = 0.5\n",
+ " idx = (ts_abs - ivl_w/2 < ts) & (ts < ts_abs + ivl_w/2)\n",
+ " ivl_avg = (reassembled_values / mems_lsb_per_g)[idx].mean()\n",
+ " acc_meas.append(ivl_avg)\n",
+ "\n",
+ "# Calculate offset correction. The offset is due to manufacturing imperfections inherent to the device.\n",
+ "# Note that while in the \"0Hz\" still part of the line at the beginning and end of the trace we see a\n",
+ "# fraction of earth's gravity due to the sensor's position inside the device and the way the device lies\n",
+ "# on the workbench, this offset cancels out once the device is rotating.\n",
+ "#\n",
+ "# Our sensor is specified to have up to +/- 1.0 g offset. This is due to its large +/- 120 g range\n",
+ "# and we're well within that.\n",
+ "#\n",
+ "# The sensor's nonlinearity error is specified as +/- 2 %FS and we're well within that as well.\n",
+ "\n",
+ "def fun(x, *args):\n",
+ " return np.sqrt(np.mean([ (meas - x[0] - theory)**2\n",
+ " for theory, meas, inc in zip(acc_theory, acc_meas, avg_include)\n",
+ " if inc ]))\n",
+ "res = scipy.optimize.minimize(fun, 1)\n",
+ "sensor_offx = np.abs(res.x[0])\n",
+ "\n",
+ "print(f'Found sensor offset: {sensor_offx:.2f} g / {sensor_offx*g:.2f} m/s^2')\n",
+ "print()\n",
+ "\n",
+ "for theory, meas in zip(acc_theory, acc_meas):\n",
+ " ax.axhline(theory - sensor_offx, color='orange', alpha=1, zorder=1)\n",
+ " meas += sensor_offx\n",
+ " \n",
+ " print(f'Centrifugal acceleration at {f_actual:.2f} Hz:')\n",
+ " print(f' Theory: {theory:.2f} g / {theory*g:.2f} m/s^2')\n",
+ " print(f' Measurement: {meas:.2f} g / {meas*g} m/s^2')\n",
+ " print(f' Rel. Error: {(theory/meas - 1.0) * 100:.2f} %')\n",
+ " print(f' Abs. Error: {theory-meas:.2f} g / {(theory-meas)*g:.2f} m/s^2')\n",
+ " print()"
]
},
{
"cell_type": "code",
- "execution_count": 210,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Largest peak at 3.1162324649298596 Hz / 186.97394789579158 rpm\n"
+ "Average speed of rotation: 19.12 Hz / 1147 rpm\n"
+ ]
+ }
+ ],
+ "source": [
+ "speed_ivl_min, speed_ivl_max = ivl_start, ivl_end\n",
+ "\n",
+ "def fun(x, args):\n",
+ " deltas, = args # poor api\n",
+ " return np.sqrt(np.mean([ ((val + 0.5*x[0]) % x[0] - 0.5*x[0])**2 for val in deltas ]))\n",
+ "res = scipy.optimize.minimize(fun, 0.05, args=[sorted(deltas[speed_ivl_min:speed_ivl_max])[:-2]])\n",
+ "interval = np.abs(res.x[0])\n",
+ "print(f'Average speed of rotation: {1/interval:.2f} Hz / {60 / interval:.0f} rpm')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[<matplotlib.lines.Line2D at 0x7f3e53ef33d0>]"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots()\n",
+ "ax.grid()\n",
+ "for i in range(int(max(deltas[speed_ivl_min:speed_ivl_max])//interval)):\n",
+ " ax.axhline(i*interval, color='orange')\n",
+ "ax.plot(sorted(deltas[speed_ivl_min:speed_ivl_max])[:-2])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Largest peak at 1.68 Hz / 101 rpm\n",
+ "Mixing product 1 at 8.32 Hz / 499 rpm\n",
+ "Mixing product 2 at 11.68 Hz / 701 rpm\n",
+ "Mixing product 3 at 18.32 Hz / 1099 rpm\n",
+ "Mixing product 4 at 21.68 Hz / 1301 rpm\n",
+ "Mixing product 5 at 28.32 Hz / 1699 rpm\n",
+ "Mixing product 6 at 31.68 Hz / 1901 rpm\n"
]
},
{
@@ -3191,7 +4288,7 @@
{
"data": {
"text/html": [
- "<img src=\"\" width=\"640\">"
+ "<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
@@ -3206,57 +4303,1036 @@
"Text(0.5, 0, 'Frequency [Hz]')"
]
},
- "execution_count": 210,
+ "execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "sampling_rate = 10 # sps, set in firmware\n",
- "\n",
- "N = 1000\n",
+ "N = ivl_end - ivl_start\n",
"T = 1/sampling_rate\n",
"x = np.linspace(0.0, N*T, N)\n",
- "y = reassembled_values[500:2000] / mems_lsb_per_g # cut out beginning and that time we tapped the thing\n",
+ "y = reassembled_values[ivl_start:ivl_end] / mems_lsb_per_g # cut out beginning and that time we tapped the thing\n",
+ "y *= scipy.signal.windows.blackmanharris(len(y))\n",
"yf = scipy.fftpack.fft(y)\n",
"xf = np.linspace(0.0, 1/(2*T), N//2)\n",
"mag = 2/N * np.abs(yf[:N//2])\n",
"\n",
"peaks, _ = scipy.signal.find_peaks(mag, height=.1, distance=1/T)\n",
- "assert peaks\n",
+ "assert peaks.any()\n",
"\n",
"peak_data = sorted([ (-mag[idx], xf[idx]) for idx in peaks ])\n",
"largest_peak_f = peak_data[0][1]\n",
- "print(f'Largest peak at {largest_peak_f:.2} Hz / {largest_peak_f * 60:.0} rpm')\n",
+ "print(f'Largest peak at {largest_peak_f:.2f} Hz / {largest_peak_f * 60:.0f} rpm')\n",
+ "for i in range(1,4):\n",
+ " mix1 = i*sampling_rate - largest_peak_f\n",
+ " mix2 = i*sampling_rate + largest_peak_f\n",
+ " print(f'Mixing product {2*i-1} at {mix1:.2f} Hz / {mix1 * 60:.0f} rpm')\n",
+ " print(f'Mixing product {2*i} at {mix2:.2f} Hz / {mix2 * 60:.0f} rpm')\n",
"\n",
"fig, ax = plt.subplots()\n",
"ax.grid()\n",
"ax.axvline(xf[peaks], color='orange')\n",
"ax.plot(xf, mag)\n",
"ax.set_ylabel('Magnitude [g]')\n",
- "ax.set_xlabel('Frequency [Hz]')\n"
+ "ax.set_xlabel('Frequency [Hz]')"
]
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
+ "execution_count": 78,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
"source": [
"fig, ax = plt.subplots()\n",
- "ax.magnitude_spectrum(reassembled_values[500:2000]/mems_lsb_per_g)"
+ "ax.grid()\n",
+ "ax.magnitude_spectrum(reassembled_values[ivl_start:ivl_end]/mems_lsb_per_g, Fs=10);"
]
},
{
"cell_type": "code",
- "execution_count": 217,
+ "execution_count": 80,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Centrifugal acceleration at 3.12 Hz: 21.09 m/s^2 / 2.15 g\n"
+ "Centrifugal acceleration at 1.68 Hz: 6.11 m/s^2 / 0.62 g\n",
+ "Centrifugal acceleration at 8.35 Hz: 151.53 m/s^2 / 15.45 g\n"
]
}
],
@@ -3265,7 +5341,1065 @@
"f = largest_peak_f\n",
"omega = 2*np.pi*f # angular velocity\n",
"centrifugal_acceleration = omega**2 * r_mems # m/s^2\n",
- "print(f'Centrifugal acceleration at {largest_peak_f:.2f} Hz: {centrifugal_acceleration:.2f} m/s^2 / {centrifugal_acceleration/g:.2f} g')"
+ "\n",
+ "f2 = 1/interval\n",
+ "omega2 = 2*np.pi*f2 # angular velocity\n",
+ "centrifugal_acceleration2 = omega2**2 * r_mems # m/s^2\n",
+ "\n",
+ "print(f'Centrifugal acceleration at {largest_peak_f:.2f} Hz: {centrifugal_acceleration:.2f} m/s^2 / {centrifugal_acceleration/g:.2f} g')\n",
+ "print(f'Centrifugal acceleration at {f2:.2f} Hz: {centrifugal_acceleration2:.2f} m/s^2 / {centrifugal_acceleration2/g:.2f} g')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 81,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Centrifugal acceleration at 0.10 Hz: 0.02 m/s^2 / 0.00 g\n",
+ "Centrifugal acceleration at 0.20 Hz: 0.09 m/s^2 / 0.01 g\n",
+ "Centrifugal acceleration at 0.50 Hz: 0.54 m/s^2 / 0.06 g\n",
+ "Centrifugal acceleration at 1.00 Hz: 2.17 m/s^2 / 0.22 g\n",
+ "Centrifugal acceleration at 1.50 Hz: 4.89 m/s^2 / 0.50 g\n",
+ "Centrifugal acceleration at 2.00 Hz: 8.69 m/s^2 / 0.89 g\n",
+ "Centrifugal acceleration at 2.50 Hz: 13.57 m/s^2 / 1.38 g\n",
+ "Centrifugal acceleration at 3.00 Hz: 19.54 m/s^2 / 1.99 g\n",
+ "Centrifugal acceleration at 3.50 Hz: 26.60 m/s^2 / 2.71 g\n",
+ "Centrifugal acceleration at 4.00 Hz: 34.74 m/s^2 / 3.54 g\n",
+ "Centrifugal acceleration at 4.50 Hz: 43.97 m/s^2 / 4.48 g\n",
+ "Centrifugal acceleration at 5.00 Hz: 54.28 m/s^2 / 5.54 g\n",
+ "Centrifugal acceleration at 6.00 Hz: 78.17 m/s^2 / 7.97 g\n",
+ "Centrifugal acceleration at 7.00 Hz: 106.39 m/s^2 / 10.85 g\n",
+ "Centrifugal acceleration at 8.00 Hz: 138.96 m/s^2 / 14.17 g\n",
+ "Centrifugal acceleration at 9.00 Hz: 175.88 m/s^2 / 17.93 g\n",
+ "Centrifugal acceleration at 10.00 Hz: 217.13 m/s^2 / 22.14 g\n",
+ "Centrifugal acceleration at 11.00 Hz: 262.73 m/s^2 / 26.79 g\n",
+ "Centrifugal acceleration at 12.00 Hz: 312.67 m/s^2 / 31.88 g\n",
+ "Centrifugal acceleration at 13.00 Hz: 366.95 m/s^2 / 37.42 g\n",
+ "Centrifugal acceleration at 14.00 Hz: 425.58 m/s^2 / 43.40 g\n",
+ "Centrifugal acceleration at 15.00 Hz: 488.55 m/s^2 / 49.82 g\n",
+ "Centrifugal acceleration at 16.00 Hz: 555.86 m/s^2 / 56.68 g\n",
+ "Centrifugal acceleration at 17.00 Hz: 627.51 m/s^2 / 63.99 g\n",
+ "Centrifugal acceleration at 18.00 Hz: 703.51 m/s^2 / 71.74 g\n",
+ "Centrifugal acceleration at 19.00 Hz: 783.84 m/s^2 / 79.93 g\n",
+ "Centrifugal acceleration at 20.00 Hz: 868.53 m/s^2 / 88.57 g\n"
+ ]
+ }
+ ],
+ "source": [
+ "for fn in [0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,\n",
+ " 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0]:\n",
+ "\n",
+ " omegan = 2*np.pi*fn # angular velocity\n",
+ " acc = omegan**2 * r_mems # m/s^2\n",
+ " print(f'Centrifugal acceleration at {fn:.2f} Hz: {acc:.2f} m/s^2 / {acc/g:.2f} g')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 83,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/javascript": [
+ "/* Put everything inside the global mpl namespace */\n",
+ "/* global mpl */\n",
+ "window.mpl = {};\n",
+ "\n",
+ "mpl.get_websocket_type = function () {\n",
+ " if (typeof WebSocket !== 'undefined') {\n",
+ " return WebSocket;\n",
+ " } else if (typeof MozWebSocket !== 'undefined') {\n",
+ " return MozWebSocket;\n",
+ " } else {\n",
+ " alert(\n",
+ " 'Your browser does not have WebSocket support. ' +\n",
+ " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+ " 'Firefox 4 and 5 are also supported but you ' +\n",
+ " 'have to enable WebSockets in about:config.'\n",
+ " );\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+ " this.id = figure_id;\n",
+ "\n",
+ " this.ws = websocket;\n",
+ "\n",
+ " this.supports_binary = this.ws.binaryType !== undefined;\n",
+ "\n",
+ " if (!this.supports_binary) {\n",
+ " var warnings = document.getElementById('mpl-warnings');\n",
+ " if (warnings) {\n",
+ " warnings.style.display = 'block';\n",
+ " warnings.textContent =\n",
+ " 'This browser does not support binary websocket messages. ' +\n",
+ " 'Performance may be slow.';\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.imageObj = new Image();\n",
+ "\n",
+ " this.context = undefined;\n",
+ " this.message = undefined;\n",
+ " this.canvas = undefined;\n",
+ " this.rubberband_canvas = undefined;\n",
+ " this.rubberband_context = undefined;\n",
+ " this.format_dropdown = undefined;\n",
+ "\n",
+ " this.image_mode = 'full';\n",
+ "\n",
+ " this.root = document.createElement('div');\n",
+ " this.root.setAttribute('style', 'display: inline-block');\n",
+ " this._root_extra_style(this.root);\n",
+ "\n",
+ " parent_element.appendChild(this.root);\n",
+ "\n",
+ " this._init_header(this);\n",
+ " this._init_canvas(this);\n",
+ " this._init_toolbar(this);\n",
+ "\n",
+ " var fig = this;\n",
+ "\n",
+ " this.waiting = false;\n",
+ "\n",
+ " this.ws.onopen = function () {\n",
+ " fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+ " fig.send_message('send_image_mode', {});\n",
+ " if (fig.ratio !== 1) {\n",
+ " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+ " }\n",
+ " fig.send_message('refresh', {});\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onload = function () {\n",
+ " if (fig.image_mode === 'full') {\n",
+ " // Full images could contain transparency (where diff images\n",
+ " // almost always do), so we need to clear the canvas so that\n",
+ " // there is no ghosting.\n",
+ " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+ " }\n",
+ " fig.context.drawImage(fig.imageObj, 0, 0);\n",
+ " };\n",
+ "\n",
+ " this.imageObj.onunload = function () {\n",
+ " fig.ws.close();\n",
+ " };\n",
+ "\n",
+ " this.ws.onmessage = this._make_on_message_function(this);\n",
+ "\n",
+ " this.ondownload = ondownload;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_header = function () {\n",
+ " var titlebar = document.createElement('div');\n",
+ " titlebar.classList =\n",
+ " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+ " var titletext = document.createElement('div');\n",
+ " titletext.classList = 'ui-dialog-title';\n",
+ " titletext.setAttribute(\n",
+ " 'style',\n",
+ " 'width: 100%; text-align: center; padding: 3px;'\n",
+ " );\n",
+ " titlebar.appendChild(titletext);\n",
+ " this.root.appendChild(titlebar);\n",
+ " this.header = titletext;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+ "\n",
+ "mpl.figure.prototype._init_canvas = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+ " canvas_div.setAttribute(\n",
+ " 'style',\n",
+ " 'border: 1px solid #ddd;' +\n",
+ " 'box-sizing: content-box;' +\n",
+ " 'clear: both;' +\n",
+ " 'min-height: 1px;' +\n",
+ " 'min-width: 1px;' +\n",
+ " 'outline: 0;' +\n",
+ " 'overflow: hidden;' +\n",
+ " 'position: relative;' +\n",
+ " 'resize: both;'\n",
+ " );\n",
+ "\n",
+ " function on_keyboard_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.key_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " canvas_div.addEventListener(\n",
+ " 'keydown',\n",
+ " on_keyboard_event_closure('key_press')\n",
+ " );\n",
+ " canvas_div.addEventListener(\n",
+ " 'keyup',\n",
+ " on_keyboard_event_closure('key_release')\n",
+ " );\n",
+ "\n",
+ " this._canvas_extra_style(canvas_div);\n",
+ " this.root.appendChild(canvas_div);\n",
+ "\n",
+ " var canvas = (this.canvas = document.createElement('canvas'));\n",
+ " canvas.classList.add('mpl-canvas');\n",
+ " canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+ "\n",
+ " this.context = canvas.getContext('2d');\n",
+ "\n",
+ " var backingStore =\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " this.context.webkitBackingStorePixelRatio ||\n",
+ " this.context.mozBackingStorePixelRatio ||\n",
+ " this.context.msBackingStorePixelRatio ||\n",
+ " this.context.oBackingStorePixelRatio ||\n",
+ " this.context.backingStorePixelRatio ||\n",
+ " 1;\n",
+ "\n",
+ " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+ "\n",
+ " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+ " 'canvas'\n",
+ " ));\n",
+ " rubberband_canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+ " );\n",
+ "\n",
+ " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+ " if (this.ResizeObserver === undefined) {\n",
+ " if (window.ResizeObserver !== undefined) {\n",
+ " this.ResizeObserver = window.ResizeObserver;\n",
+ " } else {\n",
+ " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+ " this.ResizeObserver = obs.ResizeObserver;\n",
+ " }\n",
+ " }\n",
+ "\n",
+ " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+ " var nentries = entries.length;\n",
+ " for (var i = 0; i < nentries; i++) {\n",
+ " var entry = entries[i];\n",
+ " var width, height;\n",
+ " if (entry.contentBoxSize) {\n",
+ " if (entry.contentBoxSize instanceof Array) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " width = entry.contentBoxSize[0].inlineSize;\n",
+ " height = entry.contentBoxSize[0].blockSize;\n",
+ " } else {\n",
+ " // Firefox implements old version of spec.\n",
+ " width = entry.contentBoxSize.inlineSize;\n",
+ " height = entry.contentBoxSize.blockSize;\n",
+ " }\n",
+ " } else {\n",
+ " // Chrome <84 implements even older version of spec.\n",
+ " width = entry.contentRect.width;\n",
+ " height = entry.contentRect.height;\n",
+ " }\n",
+ "\n",
+ " // Keep the size of the canvas and rubber band canvas in sync with\n",
+ " // the canvas container.\n",
+ " if (entry.devicePixelContentBoxSize) {\n",
+ " // Chrome 84 implements new version of spec.\n",
+ " canvas.setAttribute(\n",
+ " 'width',\n",
+ " entry.devicePixelContentBoxSize[0].inlineSize\n",
+ " );\n",
+ " canvas.setAttribute(\n",
+ " 'height',\n",
+ " entry.devicePixelContentBoxSize[0].blockSize\n",
+ " );\n",
+ " } else {\n",
+ " canvas.setAttribute('width', width * fig.ratio);\n",
+ " canvas.setAttribute('height', height * fig.ratio);\n",
+ " }\n",
+ " canvas.setAttribute(\n",
+ " 'style',\n",
+ " 'width: ' + width + 'px; height: ' + height + 'px;'\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.setAttribute('width', width);\n",
+ " rubberband_canvas.setAttribute('height', height);\n",
+ "\n",
+ " // And update the size in Python. We ignore the initial 0/0 size\n",
+ " // that occurs as the element is placed into the DOM, which should\n",
+ " // otherwise not happen due to the minimum size styling.\n",
+ " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+ " fig.request_resize(width, height);\n",
+ " }\n",
+ " }\n",
+ " });\n",
+ " this.resizeObserverInstance.observe(canvas_div);\n",
+ "\n",
+ " function on_mouse_event_closure(name) {\n",
+ " return function (event) {\n",
+ " return fig.mouse_event(event, name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousedown',\n",
+ " on_mouse_event_closure('button_press')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseup',\n",
+ " on_mouse_event_closure('button_release')\n",
+ " );\n",
+ " // Throttle sequential mouse events to 1 every 20ms.\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mousemove',\n",
+ " on_mouse_event_closure('motion_notify')\n",
+ " );\n",
+ "\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseenter',\n",
+ " on_mouse_event_closure('figure_enter')\n",
+ " );\n",
+ " rubberband_canvas.addEventListener(\n",
+ " 'mouseleave',\n",
+ " on_mouse_event_closure('figure_leave')\n",
+ " );\n",
+ "\n",
+ " canvas_div.addEventListener('wheel', function (event) {\n",
+ " if (event.deltaY < 0) {\n",
+ " event.step = 1;\n",
+ " } else {\n",
+ " event.step = -1;\n",
+ " }\n",
+ " on_mouse_event_closure('scroll')(event);\n",
+ " });\n",
+ "\n",
+ " canvas_div.appendChild(canvas);\n",
+ " canvas_div.appendChild(rubberband_canvas);\n",
+ "\n",
+ " this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+ " this.rubberband_context.strokeStyle = '#000000';\n",
+ "\n",
+ " this._resize_canvas = function (width, height, forward) {\n",
+ " if (forward) {\n",
+ " canvas_div.style.width = width + 'px';\n",
+ " canvas_div.style.height = height + 'px';\n",
+ " }\n",
+ " };\n",
+ "\n",
+ " // Disable right mouse context menu.\n",
+ " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ " });\n",
+ "\n",
+ " function set_focus() {\n",
+ " canvas.focus();\n",
+ " canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " window.setTimeout(set_focus, 100);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'mpl-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'mpl-button-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " var button = (fig.buttons[name] = document.createElement('button'));\n",
+ " button.classList = 'mpl-widget';\n",
+ " button.setAttribute('role', 'button');\n",
+ " button.setAttribute('aria-disabled', 'false');\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ "\n",
+ " var icon_img = document.createElement('img');\n",
+ " icon_img.src = '_images/' + image + '.png';\n",
+ " icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+ " icon_img.alt = tooltip;\n",
+ " button.appendChild(icon_img);\n",
+ "\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " var fmt_picker = document.createElement('select');\n",
+ " fmt_picker.classList = 'mpl-widget';\n",
+ " toolbar.appendChild(fmt_picker);\n",
+ " this.format_dropdown = fmt_picker;\n",
+ "\n",
+ " for (var ind in mpl.extensions) {\n",
+ " var fmt = mpl.extensions[ind];\n",
+ " var option = document.createElement('option');\n",
+ " option.selected = fmt === mpl.default_extension;\n",
+ " option.innerHTML = fmt;\n",
+ " fmt_picker.appendChild(option);\n",
+ " }\n",
+ "\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+ " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+ " // which will in turn request a refresh of the image.\n",
+ " this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_message = function (type, properties) {\n",
+ " properties['type'] = type;\n",
+ " properties['figure_id'] = this.id;\n",
+ " this.ws.send(JSON.stringify(properties));\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.send_draw_message = function () {\n",
+ " if (!this.waiting) {\n",
+ " this.waiting = true;\n",
+ " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " var format_dropdown = fig.format_dropdown;\n",
+ " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+ " fig.ondownload(fig, format);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+ " var size = msg['size'];\n",
+ " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+ " fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+ " fig.send_message('refresh', {});\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+ " var x0 = msg['x0'] / fig.ratio;\n",
+ " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+ " var x1 = msg['x1'] / fig.ratio;\n",
+ " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+ " x0 = Math.floor(x0) + 0.5;\n",
+ " y0 = Math.floor(y0) + 0.5;\n",
+ " x1 = Math.floor(x1) + 0.5;\n",
+ " y1 = Math.floor(y1) + 0.5;\n",
+ " var min_x = Math.min(x0, x1);\n",
+ " var min_y = Math.min(y0, y1);\n",
+ " var width = Math.abs(x1 - x0);\n",
+ " var height = Math.abs(y1 - y0);\n",
+ "\n",
+ " fig.rubberband_context.clearRect(\n",
+ " 0,\n",
+ " 0,\n",
+ " fig.canvas.width / fig.ratio,\n",
+ " fig.canvas.height / fig.ratio\n",
+ " );\n",
+ "\n",
+ " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+ " // Updates the figure title.\n",
+ " fig.header.textContent = msg['label'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+ " var cursor = msg['cursor'];\n",
+ " switch (cursor) {\n",
+ " case 0:\n",
+ " cursor = 'pointer';\n",
+ " break;\n",
+ " case 1:\n",
+ " cursor = 'default';\n",
+ " break;\n",
+ " case 2:\n",
+ " cursor = 'crosshair';\n",
+ " break;\n",
+ " case 3:\n",
+ " cursor = 'move';\n",
+ " break;\n",
+ " }\n",
+ " fig.rubberband_canvas.style.cursor = cursor;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+ " fig.message.textContent = msg['message'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+ " // Request the server to send over a new figure.\n",
+ " fig.send_draw_message();\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+ " fig.image_mode = msg['mode'];\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+ " for (var key in msg) {\n",
+ " if (!(key in fig.buttons)) {\n",
+ " continue;\n",
+ " }\n",
+ " fig.buttons[key].disabled = !msg[key];\n",
+ " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+ " if (msg['mode'] === 'PAN') {\n",
+ " fig.buttons['Pan'].classList.add('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " } else if (msg['mode'] === 'ZOOM') {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.add('active');\n",
+ " } else {\n",
+ " fig.buttons['Pan'].classList.remove('active');\n",
+ " fig.buttons['Zoom'].classList.remove('active');\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Called whenever the canvas gets updated.\n",
+ " this.send_message('ack', {});\n",
+ "};\n",
+ "\n",
+ "// A function to construct a web socket function for onmessage handling.\n",
+ "// Called in the figure constructor.\n",
+ "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+ " return function socket_on_message(evt) {\n",
+ " if (evt.data instanceof Blob) {\n",
+ " /* FIXME: We get \"Resource interpreted as Image but\n",
+ " * transferred with MIME type text/plain:\" errors on\n",
+ " * Chrome. But how to set the MIME type? It doesn't seem\n",
+ " * to be part of the websocket stream */\n",
+ " evt.data.type = 'image/png';\n",
+ "\n",
+ " /* Free the memory for the previous frames */\n",
+ " if (fig.imageObj.src) {\n",
+ " (window.URL || window.webkitURL).revokeObjectURL(\n",
+ " fig.imageObj.src\n",
+ " );\n",
+ " }\n",
+ "\n",
+ " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+ " evt.data\n",
+ " );\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " } else if (\n",
+ " typeof evt.data === 'string' &&\n",
+ " evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+ " ) {\n",
+ " fig.imageObj.src = evt.data;\n",
+ " fig.updated_canvas_event();\n",
+ " fig.waiting = false;\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " var msg = JSON.parse(evt.data);\n",
+ " var msg_type = msg['type'];\n",
+ "\n",
+ " // Call the \"handle_{type}\" callback, which takes\n",
+ " // the figure and JSON message as its only arguments.\n",
+ " try {\n",
+ " var callback = fig['handle_' + msg_type];\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"No handler for the '\" + msg_type + \"' message type: \",\n",
+ " msg\n",
+ " );\n",
+ " return;\n",
+ " }\n",
+ "\n",
+ " if (callback) {\n",
+ " try {\n",
+ " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+ " callback(fig, msg);\n",
+ " } catch (e) {\n",
+ " console.log(\n",
+ " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+ " e,\n",
+ " e.stack,\n",
+ " msg\n",
+ " );\n",
+ " }\n",
+ " }\n",
+ " };\n",
+ "};\n",
+ "\n",
+ "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+ "mpl.findpos = function (e) {\n",
+ " //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+ " var targ;\n",
+ " if (!e) {\n",
+ " e = window.event;\n",
+ " }\n",
+ " if (e.target) {\n",
+ " targ = e.target;\n",
+ " } else if (e.srcElement) {\n",
+ " targ = e.srcElement;\n",
+ " }\n",
+ " if (targ.nodeType === 3) {\n",
+ " // defeat Safari bug\n",
+ " targ = targ.parentNode;\n",
+ " }\n",
+ "\n",
+ " // pageX,Y are the mouse positions relative to the document\n",
+ " var boundingRect = targ.getBoundingClientRect();\n",
+ " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+ " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+ "\n",
+ " return { x: x, y: y };\n",
+ "};\n",
+ "\n",
+ "/*\n",
+ " * return a copy of an object with only non-object keys\n",
+ " * we need this to avoid circular references\n",
+ " * http://stackoverflow.com/a/24161582/3208463\n",
+ " */\n",
+ "function simpleKeys(original) {\n",
+ " return Object.keys(original).reduce(function (obj, key) {\n",
+ " if (typeof original[key] !== 'object') {\n",
+ " obj[key] = original[key];\n",
+ " }\n",
+ " return obj;\n",
+ " }, {});\n",
+ "}\n",
+ "\n",
+ "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+ " var canvas_pos = mpl.findpos(event);\n",
+ "\n",
+ " if (name === 'button_press') {\n",
+ " this.canvas.focus();\n",
+ " this.canvas_div.focus();\n",
+ " }\n",
+ "\n",
+ " var x = canvas_pos.x * this.ratio;\n",
+ " var y = canvas_pos.y * this.ratio;\n",
+ "\n",
+ " this.send_message(name, {\n",
+ " x: x,\n",
+ " y: y,\n",
+ " button: event.button,\n",
+ " step: event.step,\n",
+ " guiEvent: simpleKeys(event),\n",
+ " });\n",
+ "\n",
+ " /* This prevents the web browser from automatically changing to\n",
+ " * the text insertion cursor when the button is pressed. We want\n",
+ " * to control all of the cursor setting manually through the\n",
+ " * 'cursor' event from matplotlib */\n",
+ " event.preventDefault();\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+ " // Handle any extra behaviour associated with a key event\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.key_event = function (event, name) {\n",
+ " // Prevent repeat events\n",
+ " if (name === 'key_press') {\n",
+ " if (event.which === this._key) {\n",
+ " return;\n",
+ " } else {\n",
+ " this._key = event.which;\n",
+ " }\n",
+ " }\n",
+ " if (name === 'key_release') {\n",
+ " this._key = null;\n",
+ " }\n",
+ "\n",
+ " var value = '';\n",
+ " if (event.ctrlKey && event.which !== 17) {\n",
+ " value += 'ctrl+';\n",
+ " }\n",
+ " if (event.altKey && event.which !== 18) {\n",
+ " value += 'alt+';\n",
+ " }\n",
+ " if (event.shiftKey && event.which !== 16) {\n",
+ " value += 'shift+';\n",
+ " }\n",
+ "\n",
+ " value += 'k';\n",
+ " value += event.which.toString();\n",
+ "\n",
+ " this._key_event_extra(event, name);\n",
+ "\n",
+ " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+ " return false;\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+ " if (name === 'download') {\n",
+ " this.handle_save(this, null);\n",
+ " } else {\n",
+ " this.send_message('toolbar_button', { name: name });\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+ " this.message.textContent = tooltip;\n",
+ "};\n",
+ "\n",
+ "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+ "// prettier-ignore\n",
+ "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+ "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+ "\n",
+ "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+ "\n",
+ "mpl.default_extension = \"png\";/* global mpl */\n",
+ "\n",
+ "var comm_websocket_adapter = function (comm) {\n",
+ " // Create a \"websocket\"-like object which calls the given IPython comm\n",
+ " // object with the appropriate methods. Currently this is a non binary\n",
+ " // socket, so there is still some room for performance tuning.\n",
+ " var ws = {};\n",
+ "\n",
+ " ws.close = function () {\n",
+ " comm.close();\n",
+ " };\n",
+ " ws.send = function (m) {\n",
+ " //console.log('sending', m);\n",
+ " comm.send(m);\n",
+ " };\n",
+ " // Register the callback with on_msg.\n",
+ " comm.on_msg(function (msg) {\n",
+ " //console.log('receiving', msg['content']['data'], msg);\n",
+ " // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+ " ws.onmessage(msg['content']['data']);\n",
+ " });\n",
+ " return ws;\n",
+ "};\n",
+ "\n",
+ "mpl.mpl_figure_comm = function (comm, msg) {\n",
+ " // This is the function which gets called when the mpl process\n",
+ " // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+ "\n",
+ " var id = msg.content.data.id;\n",
+ " // Get hold of the div created by the display call when the Comm\n",
+ " // socket was opened in Python.\n",
+ " var element = document.getElementById(id);\n",
+ " var ws_proxy = comm_websocket_adapter(comm);\n",
+ "\n",
+ " function ondownload(figure, _format) {\n",
+ " window.open(figure.canvas.toDataURL());\n",
+ " }\n",
+ "\n",
+ " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+ "\n",
+ " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+ " // web socket which is closed, not our websocket->open comm proxy.\n",
+ " ws_proxy.onopen();\n",
+ "\n",
+ " fig.parent_element = element;\n",
+ " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+ " if (!fig.cell_info) {\n",
+ " console.error('Failed to find cell for figure', id, fig);\n",
+ " return;\n",
+ " }\n",
+ " fig.cell_info[0].output_area.element.on(\n",
+ " 'cleared',\n",
+ " { fig: fig },\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+ " var width = fig.canvas.width / fig.ratio;\n",
+ " fig.cell_info[0].output_area.element.off(\n",
+ " 'cleared',\n",
+ " fig._remove_fig_handler\n",
+ " );\n",
+ " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+ "\n",
+ " // Update the output cell to use the data from the current canvas.\n",
+ " fig.push_to_output();\n",
+ " var dataURL = fig.canvas.toDataURL();\n",
+ " // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+ " // the notebook keyboard shortcuts fail.\n",
+ " IPython.keyboard_manager.enable();\n",
+ " fig.parent_element.innerHTML =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ " fig.close_ws(fig, msg);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+ " fig.send_message('closing', msg);\n",
+ " // fig.ws.close()\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+ " // Turn the data on the canvas into data in the output cell.\n",
+ " var width = this.canvas.width / this.ratio;\n",
+ " var dataURL = this.canvas.toDataURL();\n",
+ " this.cell_info[1]['text/html'] =\n",
+ " '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.updated_canvas_event = function () {\n",
+ " // Tell IPython that the notebook contents must change.\n",
+ " IPython.notebook.set_dirty(true);\n",
+ " this.send_message('ack', {});\n",
+ " var fig = this;\n",
+ " // Wait a second, then push the new image to the DOM so\n",
+ " // that it is saved nicely (might be nice to debounce this).\n",
+ " setTimeout(function () {\n",
+ " fig.push_to_output();\n",
+ " }, 1000);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._init_toolbar = function () {\n",
+ " var fig = this;\n",
+ "\n",
+ " var toolbar = document.createElement('div');\n",
+ " toolbar.classList = 'btn-toolbar';\n",
+ " this.root.appendChild(toolbar);\n",
+ "\n",
+ " function on_click_closure(name) {\n",
+ " return function (_event) {\n",
+ " return fig.toolbar_button_onclick(name);\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " function on_mouseover_closure(tooltip) {\n",
+ " return function (event) {\n",
+ " if (!event.currentTarget.disabled) {\n",
+ " return fig.toolbar_button_onmouseover(tooltip);\n",
+ " }\n",
+ " };\n",
+ " }\n",
+ "\n",
+ " fig.buttons = {};\n",
+ " var buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " var button;\n",
+ " for (var toolbar_ind in mpl.toolbar_items) {\n",
+ " var name = mpl.toolbar_items[toolbar_ind][0];\n",
+ " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+ " var image = mpl.toolbar_items[toolbar_ind][2];\n",
+ " var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+ "\n",
+ " if (!name) {\n",
+ " /* Instead of a spacer, we start a new button group. */\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ " buttonGroup = document.createElement('div');\n",
+ " buttonGroup.classList = 'btn-group';\n",
+ " continue;\n",
+ " }\n",
+ "\n",
+ " button = fig.buttons[name] = document.createElement('button');\n",
+ " button.classList = 'btn btn-default';\n",
+ " button.href = '#';\n",
+ " button.title = name;\n",
+ " button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+ " button.addEventListener('click', on_click_closure(method_name));\n",
+ " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+ " buttonGroup.appendChild(button);\n",
+ " }\n",
+ "\n",
+ " if (buttonGroup.hasChildNodes()) {\n",
+ " toolbar.appendChild(buttonGroup);\n",
+ " }\n",
+ "\n",
+ " // Add the status bar.\n",
+ " var status_bar = document.createElement('span');\n",
+ " status_bar.classList = 'mpl-message pull-right';\n",
+ " toolbar.appendChild(status_bar);\n",
+ " this.message = status_bar;\n",
+ "\n",
+ " // Add the close button to the window.\n",
+ " var buttongrp = document.createElement('div');\n",
+ " buttongrp.classList = 'btn-group inline pull-right';\n",
+ " button = document.createElement('button');\n",
+ " button.classList = 'btn btn-mini btn-primary';\n",
+ " button.href = '#';\n",
+ " button.title = 'Stop Interaction';\n",
+ " button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+ " button.addEventListener('click', function (_evt) {\n",
+ " fig.handle_close(fig, {});\n",
+ " });\n",
+ " button.addEventListener(\n",
+ " 'mouseover',\n",
+ " on_mouseover_closure('Stop Interaction')\n",
+ " );\n",
+ " buttongrp.appendChild(button);\n",
+ " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+ " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+ " var fig = event.data.fig;\n",
+ " if (event.target !== this) {\n",
+ " // Ignore bubbled events from children.\n",
+ " return;\n",
+ " }\n",
+ " fig.close_ws(fig, {});\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._root_extra_style = function (el) {\n",
+ " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+ " // this is important to make the div 'focusable\n",
+ " el.setAttribute('tabindex', 0);\n",
+ " // reach out to IPython and tell the keyboard manager to turn it's self\n",
+ " // off when our div gets focus\n",
+ "\n",
+ " // location in version 3\n",
+ " if (IPython.notebook.keyboard_manager) {\n",
+ " IPython.notebook.keyboard_manager.register_events(el);\n",
+ " } else {\n",
+ " // location in version 2\n",
+ " IPython.keyboard_manager.register_events(el);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+ " var manager = IPython.notebook.keyboard_manager;\n",
+ " if (!manager) {\n",
+ " manager = IPython.keyboard_manager;\n",
+ " }\n",
+ "\n",
+ " // Check for shift+enter\n",
+ " if (event.shiftKey && event.which === 13) {\n",
+ " this.canvas_div.blur();\n",
+ " // select the cell after this one\n",
+ " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+ " IPython.notebook.select(index + 1);\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+ " fig.ondownload(fig, null);\n",
+ "};\n",
+ "\n",
+ "mpl.find_output_cell = function (html_output) {\n",
+ " // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+ " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+ " // IPython event is triggered only after the cells have been serialised, which for\n",
+ " // our purposes (turning an active figure into a static one), is too late.\n",
+ " var cells = IPython.notebook.get_cells();\n",
+ " var ncells = cells.length;\n",
+ " for (var i = 0; i < ncells; i++) {\n",
+ " var cell = cells[i];\n",
+ " if (cell.cell_type === 'code') {\n",
+ " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+ " var data = cell.output_area.outputs[j];\n",
+ " if (data.data) {\n",
+ " // IPython >= 3 moved mimebundle to data attribute of output\n",
+ " data = data.data;\n",
+ " }\n",
+ " if (data['text/html'] === html_output) {\n",
+ " return [cell, data, j];\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ " }\n",
+ "};\n",
+ "\n",
+ "// Register the function which deals with the matplotlib target/channel.\n",
+ "// The kernel may be null if the page has been refreshed.\n",
+ "if (IPython.notebook.kernel !== null) {\n",
+ " IPython.notebook.kernel.comm_manager.register_target(\n",
+ " 'matplotlib',\n",
+ " mpl.mpl_figure_comm\n",
+ " );\n",
+ "}\n"
+ ],
+ "text/plain": [
+ "<IPython.core.display.Javascript object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "<img src=\"\" width=\"640\">"
+ ],
+ "text/plain": [
+ "<IPython.core.display.HTML object>"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sampling_rate = 10 # sps, set in firmware\n",
+ "mems_lsb_per_g = 68 # LSBs per 1g for our accelerometer\n",
+ "\n",
+ "fig, ax = plt.subplots()\n",
+ "ax.axvspan(ivl_start/60/sampling_rate, ivl_end/60/sampling_rate, color='orange', alpha=0.5)\n",
+ "ax.axhline(centrifugal_acceleration/g, color='orange')\n",
+ "ax.axhline(centrifugal_acceleration2/g, color='orange')\n",
+ "interval\n",
+ "ts = np.arange(0, len(reassembled_values)) / sampling_rate / 60\n",
+ "ax.plot(ts, reassembled_values / mems_lsb_per_g )\n",
+ "ax.grid()\n",
+ "\n",
+ "g = 9.8066\n",
+ "g_to_ms = lambda x: x * g\n",
+ "ms_to_g = lambda x: x / g\n",
+ "\n",
+ "ax.set_ylabel(r'$a\\; [g]$')\n",
+ "secax_y = ax.secondary_yaxis(\n",
+ " 'right', functions=(g_to_ms, ms_to_g))\n",
+ "secax_y.set_ylabel(r'$a\\; [ms^{-1}]$')\n",
+ "\n",
+ "formatter = ticker.FuncFormatter(lambda tick, _pos: f'{tick:02.0f}:{tick*60%1:02.0f}')\n",
+ "ax.xaxis.set_major_formatter(formatter)"
]
}
],
diff --git a/prototype/sensor-analysis/test_run.sqlite3 b/prototype/sensor-analysis/test_run.sqlite3
index d177eab..e570594 100755
--- a/prototype/sensor-analysis/test_run.sqlite3
+++ b/prototype/sensor-analysis/test_run.sqlite3
Binary files differ