summaryrefslogtreecommitdiff
path: root/twisted_coil_gen_twolayer.py
blob: db5e26f1452a7e45012735d9435349977f51d817 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
#!/usr/bin/env python3

import subprocess
import sys
import math
import multiprocessing
import os
from math import *
from pathlib import Path
from itertools import cycle
from contextlib import contextmanager

from scipy.constants import mu_0
import numpy as np
import click
import matplotlib as mpl

from gerbonara.cad.kicad import pcb as kicad_pcb
from gerbonara.cad.kicad import footprints as kicad_fp
from gerbonara.cad.kicad import graphical_primitives as kicad_gr
from gerbonara.cad.kicad import primitives as kicad_pr
from gerbonara.utils import Tag
from gerbonara import graphic_primitives as gp
from gerbonara import graphic_objects as go


__version__ = '1.0.0'


def point_line_distance(p, l1, l2):
    x0, y0 = p
    x1, y1 = l1
    x2, y2 = l2
    # https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
    return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt((x2-x1)**2 + (y2-y1)**2)

def line_line_intersection(l1, l2):
    p1, p2 = l1
    p3, p4 = l2
    x1, y1 = p1
    x2, y2 = p2
    x3, y3 = p3
    x4, y4 = p4
    
    # https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
    px = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
    py = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
    return px, py

def angle_between_vectors(va, vb):
    angle = atan2(vb[1], vb[0]) - atan2(va[1], va[0])
    if angle < 0:
        angle += 2*pi
    return angle


def traces_to_gmsh(traces, mesh_out, bbox, model_name='gerbonara_board', log=True, copper_thickness=0.035, board_thickness=0.8, air_box_margin=5.0):
    import gmsh
    occ = gmsh.model.occ
    eps = 1e-6

    gmsh.initialize()
    gmsh.model.add('gerbonara_board')
    if log:
        gmsh.logger.start()

    trace_tags = {}
    trace_ends = set()
    render_cache = {}
    for i, tr in enumerate(traces, start=1):
        layer = tr[1].layer
        z0 = 0 if layer == 'F.Cu' else -(board_thickness+copper_thickness)

        prims = [prim
                 for elem in tr
                 for obj in elem.render(cache=render_cache)
                 for prim in obj.to_primitives()]

        tags = []
        for prim in prims:
            if isinstance(prim, gp.Line):
                length = dist((prim.x1, prim.y1), (prim.x2, prim.y2))
                box_tag = occ.addBox(0, -prim.width/2, 0, length, prim.width, copper_thickness)
                angle = atan2(prim.y2 - prim.y1, prim.x2 - prim.x1)
                occ.rotate([(3, box_tag)], 0, 0, 0, 0, 0, 1, angle)
                occ.translate([(3, box_tag)], prim.x1, prim.y1, z0)
                tags.append(box_tag)

                for x, y in ((prim.x1, prim.y1), (prim.x2, prim.y2)):
                    disc_id = (round(x, 3), round(y, 3), round(z0, 3), round(prim.width, 3))
                    if disc_id  in trace_ends:
                        continue

                    trace_ends.add(disc_id)
                    cylinder_tag = occ.addCylinder(x, y, z0, 0, 0, copper_thickness, prim.width/2)
                    tags.append(cylinder_tag)
        print('fusing', tags)
        tags, tag_map = occ.fuse([(3, tags[0])], [(3, tag) for tag in tags[1:]])
        print(tags)
        assert len(tags) == 1
        (_dim, tag), = tags
        trace_tags[i] = tag

    (x1, y1), (x2, y2) = bbox
    substrate = occ.addBox(x1, y1, -board_thickness, x2-x1, y2-y1, board_thickness)

    x1, y1 = x1-air_box_margin, y1-air_box_margin
    x2, y2 = x2+air_box_margin, y2+air_box_margin
    w, d = x2-x1, y2-y1
    z0 = -board_thickness-air_box_margin
    ab_h = board_thickness + 2*air_box_margin
    airbox = occ.addBox(x1, y1, z0, w, d, ab_h)

    print('Cutting airbox')
    occ.cut([(3, airbox)], [(3, tag) for tag in trace_tags.values()], removeObject=True, removeTool=False)
    print('Fragmenting')
    fragment_tags, fragment_hierarchy = occ.fragment([(3, airbox)], [(3, substrate)] + [(3, tag) for tag in trace_tags.values()])

    print('Synchronizing')
    occ.synchronize()
    substrate_physical = gmsh.model.add_physical_group(3, [substrate], name='substrate')
    airbox_physical = gmsh.model.add_physical_group(3, [airbox], name='airbox')
    trace_physical_surfaces = [
            gmsh.model.add_physical_group(2, list(gmsh.model.getAdjacencies(3, tag)[1]), name=f'trace{i}')
            for i, tag in trace_tags.items()]
    
    airbox_adjacent = set(gmsh.model.getAdjacencies(3, airbox)[1])
    in_bbox = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x1+w-eps, y1+d-eps, z0+ab_h-eps, dim=3)}
    airbox_physical_surface = gmsh.model.add_physical_group(2, list(airbox_adjacent - in_bbox), name='airbox_surface')
    
    points_airbox_adjacent = set(gmsh.model.getAdjacencies(0, airbox)[1])
    points_inside = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x1+w-eps, y1+d-eps, z0+ab_h-eps, dim=0)}
    gmsh.model.mesh.setSize([(0, tag) for tag in points_airbox_adjacent - points_inside], 10e-3)

    #gmsh.option.setNumber('Mesh.MeshSizeFromCurvature', 90)
    gmsh.option.setNumber('Mesh.Smoothing', 10)
    gmsh.option.setNumber('Mesh.Algorithm3D', 10)
    gmsh.option.setNumber('Mesh.MeshSizeMax', 1)
    gmsh.option.setNumber('General.NumThreads', multiprocessing.cpu_count())

    print('Meshing')
    gmsh.model.mesh.generate(dim=3)
    print('Writing')
    gmsh.write(str(mesh_out))

@contextmanager
def model_delta():
    import gmsh
    gmsh.model.occ.synchronize()
    entities = {i: set() for i in range(4)}
    for dim, tag in gmsh.model.getEntities():
        entities[dim].add(tag)

    yield

    gmsh.model.occ.synchronize()
    new_entities = {i: set() for i in range(4)}
    for dim, tag in gmsh.model.getEntities():
        new_entities[dim].add(tag)

    for i, dimtype in enumerate(['points', 'lines', 'surfaces', 'volumes']):
        delta = entities[i] - new_entities[i]
        print(f'Removed {dimtype} [{len(delta)}]: {", ".join(map(str, delta))[:180]}')

        delta = new_entities[i] - entities[i]
        print(f'New {dimtype} [{len(delta)}]: {", ".join(map(str, delta))[:180]}')


def _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h):
    import gmsh
    occ = gmsh.model.occ
    trace_tags = []
    trace_ends = set()
    render_cache = {}
    first_disk, last_disk = None, None
    for i, tr in enumerate(traces, start=1):
        layer = tr[1].layer
        z0 = 0 if layer == 'F.Cu' else -(board_thickness+copper_thickness)

        objs = [obj
                 for elem in tr
                 for obj in elem.render(cache=render_cache)]

        tags = []
        for ob in objs:
            if isinstance(ob, go.Line):
                length = dist((ob.x1, ob.y1), (ob.x2, ob.y2))
                w = ob.aperture.equivalent_width('mm')
                box_tag = occ.addBox(0, -w/2, 0, length, w, copper_thickness)
                angle = atan2(ob.y2 - ob.y1, ob.x2 - ob.x1)
                occ.rotate([(3, box_tag)], 0, 0, 0, 0, 0, 1, angle)
                occ.translate([(3, box_tag)], ob.x1, ob.y1, z0)
                tags.append(box_tag)

                for x, y in ((ob.x1, ob.y1), (ob.x2, ob.y2)):
                    disc_id = (round(x, 3), round(y, 3), round(z0, 3), round(w, 3))
                    if disc_id  in trace_ends:
                        continue

                    trace_ends.add(disc_id)
                    cylinder_tag = occ.addCylinder(x, y, z0, 0, 0, copper_thickness, w/2)
                    tags.append(cylinder_tag)

                    if first_disk is None:
                        occ.synchronize()
                        adjacent = gmsh.model.getAdjacencies(3, cylinder_tag)
                        first_disk = adjacent
                    elif i == len(traces) and last_disk is None:
                        occ.synchronize()
                        adjacent = gmsh.model.getAdjacencies(3, cylinder_tag)
                        last_disk = adjacent
            
        for elem in tr:
            if isinstance(elem, kicad_pcb.Via):
                cylinder_tag = occ.addCylinder(elem.at.x, elem.at.y, 0, 0, 0, -board_thickness, elem.drill)
                tags.append(cylinder_tag)
                occ.synchronize()

        print('fusing', tags)
        tags, tag_map = occ.fuse([(3, tags[0])], [(3, tag) for tag in tags[1:]])
        print(tags)
        assert len(tags) == 1
        (_dim, tag), = tags
        trace_tags.append(tag)

    print('fusing top-level', trace_tags)
    tags, tag_map = occ.fuse([(3, trace_tags[0])], [(3, tag) for tag in trace_tags[1:]])
    print(tags)
    assert len(tags) == 1
    (_dim, toplevel_tag), = tags

    (x1, y1), (x2, y2) = bbox

    first_geom = traces[0][0]

    with model_delta():
        print('Fragmenting disks')
        interface_tag_top = occ.addDisk(first_geom.start.x, first_geom.start.y, 0, first_geom.width/2, first_geom.width/2)
        interface_tag_bottom = occ.addDisk(first_geom.start.x, first_geom.start.y, -board_thickness, first_geom.width/2, first_geom.width/2)
        occ.fragment([(3, toplevel_tag)], [(2, interface_tag_top), (2, interface_tag_bottom)], removeObject=True, removeTool=True)

    substrate = occ.addBox(x1, y1, -board_thickness, x2-x1, y2-y1, board_thickness)

    print('cut')
    with model_delta():
        print(occ.cut([(3, substrate)], [(3, toplevel_tag)], removeObject=True, removeTool=False))

    return toplevel_tag, interface_tag_top, interface_tag_bottom, substrate


def traces_to_gmsh_mag(traces, mesh_out, bbox, model_name='gerbonara_board', log=True, copper_thickness=0.035, board_thickness=0.8, air_box_margin_h=30.0, air_box_margin_v=80.0):
    import gmsh
    occ = gmsh.model.occ
    eps = 1e-6

    gmsh.initialize()
    gmsh.model.add('gerbonara_board')
    if log:
        gmsh.logger.start()

    toplevel_tag, interface_tag_top, interface_tag_bottom, substrate = _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h)

    (x1, y1), (x2, y2) = bbox
    x1, y1 = x1-air_box_margin_h, y1-air_box_margin_h
    x2, y2 = x2+air_box_margin_h, y2+air_box_margin_h
    w, d = x2-x1, y2-y1
    z0 = -2*copper_thickness-board_thickness-air_box_margin_v
    ab_h = 2*copper_thickness + board_thickness + 2*air_box_margin_v
    airbox = occ.addBox(x1, y1, z0, w, d, ab_h)

    print('cut')
    with model_delta():
        print(occ.cut([(3, airbox)], [(3, toplevel_tag), (3, substrate)], removeObject=True, removeTool=False))

    print(f'Fragmenting airbox ({airbox}) with {toplevel_tag=} {substrate=}')
    with model_delta():
        print(occ.fragment([(3, airbox)], [(3, toplevel_tag), (3, substrate)], removeObject=True, removeTool=False))

    print('Synchronizing')
    occ.synchronize()

    first_geom = traces[0][0]
    pcx, pcy = first_geom.start.x, first_geom.start.y
    pcr = first_geom.width/2
    (_dim, plane_top), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -eps, pcx+pcr+eps, pcy+pcr+eps, eps, 2)
    (_dim, plane_bottom), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -board_thickness-eps, pcx+pcr+eps, pcy+pcr+eps, -board_thickness+eps, 2)

    substrate_physical = gmsh.model.add_physical_group(3, [substrate], name='substrate')
    airbox_physical = gmsh.model.add_physical_group(3, [airbox], name='airbox')
    trace_physical = gmsh.model.add_physical_group(3, [toplevel_tag], name='trace')

    gmsh.model.mesh.setSize([(0, tag) for dim, tag in gmsh.model.getBoundary([(3, toplevel_tag)], recursive=True) if dim == 0], 0.100)
    gmsh.model.mesh.setSize([(0, tag) for dim, tag in gmsh.model.getBoundary([(3, substrate)], recursive=True) if dim == 0], 0.200)

    #interface_tags_top = gmsh.model.getBoundary([(3, contact_tag_top)], oriented=False)
    #interface_tags_bottom = gmsh.model.getBoundary([(3, contact_tag_bottom)], oriented=False)

    interface_top_physical = gmsh.model.add_physical_group(2, [plane_top], name='interface_top')
    interface_bottom_physical = gmsh.model.add_physical_group(2, [plane_bottom], name='interface_bottom')

    airbox_adjacent = set(gmsh.model.getAdjacencies(3, airbox)[1])
    in_bbox = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x2-eps, y2-eps, z0+ab_h-eps, dim=2)}
    airbox_physical_surface = gmsh.model.add_physical_group(2, list(airbox_adjacent - in_bbox), name='airbox_surface')
    
    points_airbox_adjacent = {tag for _dim, tag in gmsh.model.getBoundary([(3, airbox)], recursive=True, oriented=False)}
    print(f'{points_airbox_adjacent=}')
    points_inside = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x1+w-eps, y1+d-eps, z0+ab_h-eps, dim=0)}
    #gmsh.model.mesh.setSize([(0, tag) for tag in points_airbox_adjacent - points_inside], 300e-3)

    gmsh.option.setNumber('Mesh.MeshSizeFromCurvature', 32)
    gmsh.option.setNumber('Mesh.Smoothing', 10)
    gmsh.option.setNumber('Mesh.Algorithm3D', 10) # HXT
    gmsh.option.setNumber('Mesh.MeshSizeMax', 10)
    gmsh.option.setNumber('Mesh.MeshSizeMin', 0.08)
    gmsh.option.setNumber('General.NumThreads', multiprocessing.cpu_count())

    print('Writing geo file')
    gmsh.write('/tmp/test.geo_unrolled')
    print('Meshing')
    gmsh.model.mesh.generate(dim=3)
    print('Writing to', str(mesh_out))
    gmsh.write(str(mesh_out))


def traces_to_gmsh_mag_mutual(traces, mesh_out, bbox, model_name='gerbonara_board', log=True, copper_thickness=0.035, board_thickness=0.8, air_box_margin_h=30.0, air_box_margin_v=80.0, mutual_offset=(0, 0, 5), mutual_rotation=(0, 0, 0)):
    import gmsh
    occ = gmsh.model.occ
    eps = 1e-6

    gmsh.initialize()
    gmsh.model.add('gerbonara_board')
    if log:
        gmsh.logger.start()

    m_dx, m_dy, m_dz = mutual_offset
    m_ax, m_ay, m_az = mutual_rotation
    m_dz += 2*copper_thickness + board_thickness

    toplevel_tag1, interface_tag_top1, interface_tag_bottom1, substrate1 = _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h)

    upper_coil = [(3, toplevel_tag1), (3, substrate1)]
    occ.translate(upper_coil, m_dx, m_dy, m_dz)

    print('rotate')
    with model_delta():
        occ.rotate(upper_coil, 0, 0, 0, 0, 0, 1, m_az)

    toplevel_tag2, interface_tag_top2, interface_tag_bottom2, substrate2 = _gmsh_coil_inductance_geometry(traces, mesh_out, bbox, copper_thickness, board_thickness, air_box_margin_h)

    (x1, y1), (x2, y2) = bbox
    x1, y1 = x1-air_box_margin_h, y1-air_box_margin_h
    x2, y2 = x2+air_box_margin_h, y2+air_box_margin_h
    w, d = x2-x1, y2-y1
    z0 = -2*copper_thickness-board_thickness-air_box_margin_v
    ab_h = 4*copper_thickness + 2*board_thickness + 2*air_box_margin_v + m_dz
    airbox = occ.addBox(x1, y1, z0, w, d, ab_h)

    print('cut')
    with model_delta():
        print(occ.cut([(3, airbox)], [(3, toplevel_tag1), (3, toplevel_tag2), (3, substrate1), (3, substrate2)], removeObject=True, removeTool=False))

    print(f'Fragmenting airbox ({airbox}) with {toplevel_tag1=} {substrate1=} {toplevel_tag2=} {substrate2=}')
    with model_delta():
        print(occ.fragment([(3, airbox)], [(3, toplevel_tag1), (3, toplevel_tag2), (3, substrate1), (3, substrate2)], removeObject=True, removeTool=False))

    print('Synchronizing')
    occ.synchronize()

    first_geom = traces[0][0]
    pcx, pcy = first_geom.start.x + m_dx, first_geom.start.y + m_dy
    pcx, pcy = math.cos(m_az) * pcx - math.sin(m_az) * pcy, math.sin(m_az) * pcx + math.cos(m_az) * pcy
    pcr = first_geom.width/2

    (_dim, plane_top1), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, m_dz-eps, pcx+pcr+eps, pcy+pcr+eps, m_dz+eps, 2)
    (_dim, plane_bottom1), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, m_dz-board_thickness-eps, pcx+pcr+eps, pcy+pcr+eps, m_dz-board_thickness+eps, 2)

    pcx, pcy = first_geom.start.x, first_geom.start.y
    (_dim, plane_top2), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -eps, pcx+pcr+eps, pcy+pcr+eps, eps, 2)
    (_dim, plane_bottom2), = gmsh.model.getEntitiesInBoundingBox(pcx-pcr-eps, pcy-pcr-eps, -board_thickness-eps, pcx+pcr+eps, pcy+pcr+eps, -board_thickness+eps, 2)

    substrate1_physical = gmsh.model.add_physical_group(3, [substrate1], name='substrate1')
    trace1_physical = gmsh.model.add_physical_group(3, [toplevel_tag1], name='trace1')
    substrate2_physical = gmsh.model.add_physical_group(3, [substrate2], name='substrate2')
    trace2_physical = gmsh.model.add_physical_group(3, [toplevel_tag2], name='trace2')
    airbox_physical = gmsh.model.add_physical_group(3, [airbox], name='airbox')

    interface_top1_physical = gmsh.model.add_physical_group(2, [plane_top1], name='interface_top1')
    interface_bottom1_physical = gmsh.model.add_physical_group(2, [plane_bottom1], name='interface_bottom1')
    interface_top2_physical = gmsh.model.add_physical_group(2, [plane_top2], name='interface_top2')
    interface_bottom2_physical = gmsh.model.add_physical_group(2, [plane_bottom2], name='interface_bottom2')

    airbox_adjacent = set(gmsh.model.getAdjacencies(3, airbox)[1])
    in_bbox = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x2-eps, y2-eps, z0+ab_h-eps, dim=2)}
    airbox_physical_surface = gmsh.model.add_physical_group(2, list(airbox_adjacent - in_bbox), name='airbox_surface')
    
    points_airbox_adjacent = {tag for _dim, tag in gmsh.model.getBoundary([(3, airbox)], recursive=True, oriented=False)}
    print(f'{points_airbox_adjacent=}')
    points_inside = {tag for _dim, tag in gmsh.model.getEntitiesInBoundingBox(x1+eps, y1+eps, z0+eps, x1+w-eps, y1+d-eps, z0+ab_h-eps, dim=0)}
    #gmsh.model.mesh.setSize([(0, tag) for tag in points_airbox_adjacent - points_inside], 300e-3)

    gmsh.option.setNumber('Mesh.MeshSizeFromCurvature', 32)
    gmsh.option.setNumber('Mesh.Smoothing', 10)
    gmsh.option.setNumber('Mesh.Algorithm3D', 10)
    gmsh.option.setNumber('Mesh.MeshSizeMax', 10)
    gmsh.option.setNumber('Mesh.MeshSizeMin', 0.08)
    gmsh.option.setNumber('General.NumThreads', multiprocessing.cpu_count())

    print('Meshing')
    gmsh.model.mesh.generate(dim=3)
    print('Writing to', str(mesh_out))
    gmsh.write(str(mesh_out))


def traces_to_magneticalc(traces, out, pcb_thickness=0.8):
    coords = []
    last_x, last_y, last_z = None, None, None
    def coord(x, y, z):
        nonlocal coords, last_x, last_y, last_z
        if (x, y, z) != (last_x, last_y, last_z):
            coords.append((x, y, z))

    render_cache = {}
    for tr in traces:
        z = pcb_thickness if tr[1].layer == 'F.Cu' else 0
        objs = [obj
                 for elem in tr
                 for obj in elem.render(cache=render_cache)
                 if isinstance(elem, (kicad_pcb.TrackSegment, kicad_pcb.TrackArc))]

        # start / switch layer
        coord(objs[0].x1, objs[0].y1, z)

        for ob in objs:
            coord(ob.x2, ob.y2, z)

    np.savetxt(out, np.array(coords) / 10) # magneticalc expects centimeters, not millimeters.


class SVGPath:
    def __init__(self, **attrs):
        self.d = ''
        self.attrs = attrs

    def line(self, x, y):
        self.d += f'L {x} {y} '

    def move(self, x, y):
        self.d += f'M {x} {y} '

    def arc(self, x, y, r, large, sweep):
        self.d += f'A {r} {r} 0 {int(large)} {int(sweep)} {x} {y} '

    def close(self):
        self.d += 'Z '

    def __str__(self):
        attrs = ' '.join(f'{key.replace("_", "-")}="{value}"' for key, value in self.attrs.items())
        return f'<path {attrs} d="{self.d.rstrip()}"/>'

class SVGCircle:
    def __init__(self, r, cx, cy, **attrs):
        self.r = r
        self.cx, self.cy = cx, cy
        self.attrs = attrs

    def __str__(self):
        attrs = ' '.join(f'{key.replace("_", "-")}="{value}"' for key, value in self.attrs.items())
        return f'<circle {attrs} r="{self.r}" cx="{self.cx}" cy="{self.cy}"/>'

def svg_file(fn, stuff, vbw, vbh, vbx=0, vby=0):
    with open(fn, 'w') as f:
        f.write('<?xml version="1.0" standalone="no"?>\n')
        f.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n')
        f.write(f'<svg version="1.1" width="{vbw*4}mm" height="{vbh*4}mm" viewBox="{vbx} {vby} {vbw} {vbh}" style="background-color: #333" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">>\n')

        for foo in stuff:
            f.write(str(foo))

        f.write('</svg>\n')


# https://en.wikipedia.org/wiki/Farey_sequence#Next_term
def farey_sequence(n: int, descending: bool = False) -> None:
    """Print the n'th Farey sequence. Allow for either ascending or descending."""
    a, b, c, d = 0, 1, 1, n
    if descending:
        a, c = 1, n - 1
    #print(f"{a}/{b}")
    yield a, b

    while c <= n and not descending or a > 0 and descending:
        k = (n + b) // d
        a, b, c, d = c, d, k * c - a, k * d - b
        #print(f"{a}/{b}")
        yield a, b


def divisors(n, max_b=10):
    for a, b in farey_sequence(n):
        if a == n and b < max_b:
            yield b
        if b == n and a < max_b:
            yield a


def print_valid_twists(ctx, param, value):
    if not value or ctx.resilient_parsing:
        return

    print(f'Valid twist counts for {value} turns:', file=sys.stderr)
    for d in divisors(value, value):
        print(f'  {d}', file=sys.stderr)

    click.echo()
    ctx.exit()


@click.command()
@click.argument('outfile', required=False, type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--footprint-name', help="Name for the generated footprint. Default: Output file name sans extension.")
@click.option('--layer-pair', default='F.Cu,B.Cu', help="Target KiCad layer pair for the generated footprint, comma-separated. Default: F.Cu/B.Cu.")
@click.option('--turns', type=int, default=5, help='Number of turns')
@click.option('--pcb/--footprint', default=False, help='Generate a KiCad PCB instead of a footprint')
@click.option('--outer-diameter', type=float, default=50, help='Outer diameter [mm]')
@click.option('--inner-diameter', type=float, default=25, help='Inner diameter [mm]')
@click.option('--trace-width', type=float, default=None)
@click.option('--via-diameter', type=float, default=0.6)
@click.option('--two-layer/--single-layer', default=True)
@click.option('--via-drill', type=float, default=0.3)
@click.option('--via-offset', type=float, default=None, help='Radially offset vias from trace endpoints [mm]')
@click.option('--keepout-zone/--no-keepout-zone', default=True, help='Add a keepout are to the footprint (default: yes)')
@click.option('--keepout-margin', type=float, default=5, help='Margin between outside of coil and keepout area (mm, default: 5)')
@click.option('--copper-thickness', type=float, default=0.035, help='Copper thickness for resistance calculation and mesh generation in mm. Default: 0.035mm ^= 1 Oz')
@click.option('--board-thickness', type=float, default=1.53, help='Board substrate thickness for mesh generation in mm. Default: 1.53mm')
@click.option('--twists', type=int, default=1, help='Number of twists per revolution. Note that this number must be co-prime to the number of turns. Run with --show-twists to list valid values. (default: 1)')
@click.option('--circle-segments', type=int, default=64, help='When not using arcs, the number of points to use for arc interpolation per 360 degrees.')
@click.option('--show-twists', callback=print_valid_twists, expose_value=False, type=int, is_eager=True, help='Calculate and show valid --twists counts for the given number of turns. Takes the number of turns as a value.')
@click.option('--clearance', type=float, default=None)
@click.option('--arc-tolerance', type=float, default=0.02)
@click.option('--mesh-out', type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--mag-mesh-out', type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--mag-mesh-mutual-out', type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--mutual-offset-x', type=float, default=0)
@click.option('--mutual-offset-y', type=float, default=0)
@click.option('--mutual-offset-z', type=float, default=5)
@click.option('--mutual-rotation-z', type=float, default=0)
@click.option('--magneticalc-out', type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--clipboard/--no-clipboard', help='Use clipboard integration (requires wl-clipboard)')
@click.option('--counter-clockwise/--clockwise', help='Direction of generated spiral. Default: clockwise when wound from the inside.')
@click.version_option()
def generate(outfile, turns, outer_diameter, inner_diameter, via_diameter, via_drill, via_offset, trace_width, clearance,
             footprint_name, layer_pair, twists, clipboard, counter_clockwise, keepout_zone, keepout_margin,
             arc_tolerance, pcb, mesh_out, magneticalc_out, circle_segments, mag_mesh_out, copper_thickness,
             board_thickness, mag_mesh_mutual_out, mutual_offset_x, mutual_offset_y, mutual_offset_z, mutual_rotation_z,
             two_layer):

    if 'WAYLAND_DISPLAY' in os.environ:
        copy, paste, cliputil = ['wl-copy'], ['wl-paste'], 'xclip'
    else:
        copy, paste, cliputil = ['xclip', '-i', '-sel', 'clipboard'], ['xclip', '-o', '-sel' 'clipboard'], 'wl-clipboard'

    if gcd(twists, turns) != 1:
        raise click.ClickException('For the geometry to work out, the --twists parameter must be co-prime to --turns, i.e. the two must have 1 as their greatest common divisor. You can print valid values for --twists by running this command with --show-twists [turns number].')

    if mesh_out and not pcb:
        raise click.ClickException('--pcb is required when --mesh-out is used.')

    if magneticalc_out and not pcb:
        raise click.ClickException('--pcb is required when --magneticalc-out is used.')

    outer_radius = outer_diameter/2
    inner_radius = inner_diameter/2
    turns_per_layer = turns/2 if two_layer else turns

    sweeping_angle = 2*pi * turns_per_layer / twists
    spiral_pitch = (outer_radius-inner_radius) / turns_per_layer
    c1 = inner_radius
    c2 = inner_radius + spiral_pitch
    alpha1 = atan((outer_radius - inner_radius) / sweeping_angle / c1)
    alpha2 = atan((outer_radius - inner_radius) / sweeping_angle / c2)
    alpha = (alpha1+alpha2)/2
    projected_spiral_pitch = spiral_pitch*cos(alpha)

    if trace_width is None and clearance is None:
        trace_width = 0.15
        print(f'Warning: Defaulting to {trace_width:.2f} mm trace width.', file=sys.stderr)

    if trace_width is None:
        if round(clearance, 3) > round(projected_spiral_pitch, 3):
            raise click.ClickException(f'Error: Given clearance of {clearance:.2f} mm is larger than the projected spiral pitch of {projected_spiral_pitch:.2f} mm. Reduce clearance or increase the size of the coil.')
        trace_width = projected_spiral_pitch - clearance
        print(f'Calculated trace width for {clearance:.2f} mm clearance is {trace_width:.2f} mm.', file=sys.stderr)

    elif clearance is None:
        if round(trace_width, 2) > round(projected_spiral_pitch, 2):
            raise click.ClickException(f'Error: Given trace width of {trace_width:.2f} mm is larger than the projected spiral pitch of {projected_spiral_pitch:.2f} mm. Reduce clearance or increase the size of the coil.')
        clearance = projected_spiral_pitch - trace_width
        print(f'Calculated clearance for {trace_width:.2f} mm trace width is {clearance:.2f} mm.', file=sys.stderr)

    else:
        if round(trace_width, 2) > round(projected_spiral_pitch, 2):
            raise click.ClickException(f'Error: Given trace width of {trace_width:.2f} mm is larger than the projected spiral pitch of {projected_spiral_pitch:.2f} mm. Reduce clearance or increase the size of the coil.')
        clearance_actual = projected_spiral_pitch - trace_width
        if round(clearance_actual, 3) < round(clearance, 3):
            raise click.ClickException(f'Error: Actual clearance for {trace_width:.2f} mm trace is {clearance_actual:.2f} mm, which is lower than the given clearance of {clearance:.2f} mm.')

    if round(via_diameter, 2) < round(trace_width, 2):
        print(f'Clipping via diameter from {via_diameter:.2f} mm to trace width of {trace_width:.2f} mm.', file=sys.stderr)
        via_diameter = trace_width

    if via_offset is None:
        via_offset = max(0, (via_diameter-trace_width)/2)
        print(f'Autocalculated via offset {via_offset:.2f} mm', file=sys.stderr)

    inner_via_ring_radius = inner_radius - via_offset
    #print(f'{inner_radius=} {via_offset=} {via_diameter=}', file=sys.stderr)
    inner_via_angle = 2*asin((via_diameter + clearance)/2 / inner_via_ring_radius)

    outer_via_ring_radius = outer_radius + via_offset
    outer_via_angle = 2*asin((via_diameter + clearance)/2 / outer_via_ring_radius)

    print(f'Inner via ring @r={inner_via_ring_radius:.2f} mm (from {inner_radius:.2f} mm)', file=sys.stderr)
    print(f'    {degrees(inner_via_angle):.1f} deg / via', file=sys.stderr)
    print(f'Outer via ring @r={outer_via_ring_radius:.2f} mm (from {outer_radius:.2f} mm)', file=sys.stderr)
    print(f'    {degrees(outer_via_angle):.1f} deg / via', file=sys.stderr)

    # Check if the vias of the inner ring are so large that they would overlap
    if inner_via_angle*twists > 2*pi:
        min_dia = 2*((via_diameter + clearance) / (2*sin(pi / twists)) + via_offset)
        raise click.ClickException(f'Error: Overlapping vias in inner via ring. Calculated minimum inner diameter is {min_dia:.2f} mm.')

    pitch = clearance + trace_width
    t, _, b = layer_pair.partition(',')
    layer_pair = (t.strip(), b.strip())
    rainbow = '#817 #a35 #c66 #e94 #ed0 #9d5 #4d8 #2cb #0bc #09c #36b #639'.split()
    rainbow = rainbow[2::3] + rainbow[1::3] + rainbow[0::3]
    n = 5
    rainbow = rainbow[n:] + rainbow[:n]
    out_paths = []
    svg_stuff = [*out_paths]

    # For fill factor & inductance formulas, See https://coil32.net/pcb-coil.html for details
    d_avg = (outer_diameter + inner_diameter)/2
    phi = (outer_diameter - inner_diameter) / (outer_diameter + inner_diameter)
    c1, c2, c3, c4 = 1.00, 2.46, 0.00, 0.20
    L = mu_0 * turns**2 * d_avg*1e3 * c1 / 2 * (log(c2/phi) + c3*phi + c4*phi**2)
    print(f'Outer diameter: {outer_diameter:g} mm', file=sys.stderr)
    print(f'Average diameter: {d_avg:g} mm', file=sys.stderr)
    print(f'Inner diameter: {inner_diameter:g} mm', file=sys.stderr)
    print(f'Fill factor: {phi:g}', file=sys.stderr)
    print(f'Approximate inductance: {L:g} µH', file=sys.stderr)

    make_pad = lambda num, layer, x, y: kicad_fp.Pad(
            number=str(num),
            type=kicad_fp.Atom.smd,
            shape=kicad_fp.Atom.circle,
            at=kicad_fp.AtPos(x=x, y=y),
            size=kicad_fp.XYCoord(x=trace_width, y=trace_width),
            layers=layer,
            clearance=clearance,
            zone_connect=0)

    make_line = lambda x1, y1, x2, y2, layer: kicad_fp.Line(
                start=kicad_fp.XYCoord(x=x1, y=y1),
                end=kicad_fp.XYCoord(x=x2, y=y2),
                layer=layer, 
                stroke=kicad_fp.Stroke(width=trace_width))

    make_arc = lambda x1, y1, x2, y2, xm, ym, layer: kicad_fp.Arc(
                start=kicad_fp.XYCoord(x=x1, y=y1),
                mid=kicad_fp.XYCoord(x=xm, y=ym),
                end=kicad_fp.XYCoord(x=x2, y=y2),
                layer=layer, 
                stroke=kicad_fp.Stroke(width=trace_width))


    make_via = lambda x, y, layers: kicad_fp.Pad(number="NC",
                     type=kicad_fp.Atom.thru_hole,
                     shape=kicad_fp.Atom.circle,
                     at=kicad_fp.AtPos(x=x, y=y),
                     size=kicad_fp.XYCoord(x=via_diameter, y=via_diameter),
                     drill=kicad_fp.Drill(diameter=via_drill),
                     layers=layers,
                     clearance=clearance, 
                     zone_connect=0)

    pads = []
    lines = []
    arcs = []

    def arc_approximate(points, layer, tolerance=0.02, level=0):
        indent = '    ' * level
        #print(f'{indent}arc_approximate {len(points)=}', file=sys.stderr)
        if len(points) < 3:
            raise ValueError()

        i_mid = len(points)//2

        x0, y0 = points[0]
        x1, y1 = points[i_mid]
        x2, y2 = points[-1]

        if len(points) < 5:
            #print(f'{indent} -> interp last points', file=sys.stderr)
            yield make_arc(x0, y0, x2, y2, x1, y1, layer)

        # https://stackoverflow.com/questions/56224824/how-do-i-find-the-circumcenter-of-the-triangle-using-python-without-external-lib
        d = 2 * (x0 * (y2 - y1) + x2 * (y1 - y0) + x1 * (y0 - y2))
        cx = ((x0 * x0 + y0 * y0) * (y2 - y1) + (x2 * x2 + y2 * y2) * (y1 - y0) + (x1 * x1 + y1 * y1) * (y0 - y2)) / d
        cy = ((x0 * x0 + y0 * y0) * (x1 - x2) + (x2 * x2 + y2 * y2) * (x0 - x1) + (x1 * x1 + y1 * y1) * (x2 - x0)) / d
        r = dist((cx, cy), (x1, y1))
        if any(abs(dist((px, py), (cx, cy)) - r) > tolerance for px, py in points):
            #print(f'{indent} -> split', file=sys.stderr)
            yield from arc_approximate(points[:i_mid+1], layer, tolerance, level+1)
            yield from arc_approximate(points[i_mid:], layer, tolerance, level+1)

        else:
            yield make_arc(x0, y0, x2, y2, x1, y1, layer)
            #print(f'{indent} -> good fit', file=sys.stderr)

    def do_spiral(layer, r1, r2, a1, a2, start_frac, end_frac, fn=64):
        use_arcs = not pcb

        fn = ceil(fn * (a2-a1)/(2*pi))
        x0, y0 = cos(a1)*r1, sin(a1)*r1
        direction = '↓' if r2 < r1 else '↑'
        dr = 3 if r2 < r1 else -3
        label = f'{direction} {degrees(a1):.0f}'
        svg_stuff.append(Tag('text',
                             [label],
                             x=str(x0 + cos(a1)*dr),
                             y=str(y0 + sin(a1)*dr),
                             text_anchor='middle',
                             style=f'font: 1px bold sans-serif; fill: {rainbow[layer%len(rainbow)]}'))

        xn, yn = x0, y0
        points = [(x0, y0)]
        dists = []
        for i in range(fn):
            r, g, b, _a = mpl.cm.plasma(start_frac + (end_frac - start_frac)/fn * (i + 0.5))
            path = SVGPath(fill='none', stroke=f'#{round(r*255):02x}{round(g*255):02x}{round(b*255):02x}', stroke_width=trace_width, stroke_linejoin='round', stroke_linecap='round')
            svg_stuff.append(path)
            xp, yp = xn, yn
            r = r1 + (i+1)*(r2-r1)/fn
            a = a1 + (i+1)*(a2-a1)/fn
            xn, yn = cos(a)*r, sin(a)*r
            path.move(xp, yp)
            path.line(xn, yn)
            points.append((xn, yn))
            dists.append(dist((xp, yp), (xn, yn)))
            if not use_arcs:
                lines.append(make_line(xp, yp, xn, yn, layer_pair[layer]))

        if use_arcs:
            arcs.extend(arc_approximate(points, layer_pair[layer], arc_tolerance))

        svg_stuff.append(Tag('text',
                             [label],
                             x=str(xn + cos(a2)*-dr),
                             y=str(yn + sin(a2)*-dr + 1.2),
                             text_anchor='middle',
                             style=f'font: 1px bold sans-serif; fill: {rainbow[layer%len(rainbow)]}'))

        return (x0, y0), (xn, yn), sum(dists)

    sector_angle = 2*pi / twists
    total_angle = twists*2*sweeping_angle if two_layer else twists*sweeping_angle

    inverse = {}
    for i in range(twists):
        inverse[i*turns%twists] = i

    svg_vias = []
    for i in range(twists):
        start_angle = i*sector_angle
        fold_angle = start_angle + sweeping_angle
        end_angle = fold_angle + sweeping_angle

        x = inverse[i]*floor(2*sweeping_angle / (2*pi)) * 2*pi
        (x0, y0), (xn, yn), clen = do_spiral(0, outer_radius, inner_radius, start_angle, fold_angle, (x + start_angle)/total_angle, (x + fold_angle)/total_angle, circle_segments)
        if two_layer:
            do_spiral(1, inner_radius, outer_radius, fold_angle, end_angle, (x + fold_angle)/total_angle, (x + end_angle)/total_angle)
        else:
            dr = outer_radius - inner_radius
            xq = xn + cos(fold_angle) * dr
            yq = yn - sin(fold_angle) * dr
            lines.append(make_line(xn, yn, xq, yq, layer_pair[1]))

            r, g, b, _a = mpl.cm.plasma((x + fold_angle)/total_angle)
            path = SVGPath(fill='none', stroke=f'#{round(r*255):02x}{round(g*255):02x}{round(b*255):02x}', stroke_width=trace_width, stroke_linejoin='round', stroke_linecap='round')
            svg_stuff.append(path)
            path.move(xn, yn)
            path.line(xq, yq)

        xv, yv = inner_via_ring_radius*cos(fold_angle), inner_via_ring_radius*sin(fold_angle)
        pads.append(make_via(xv, yv, layer_pair))
        if not isclose(via_offset, 0, abs_tol=1e-6):
            lines.append(make_line(xn, yn, xv, yv, layer_pair[0]))
            lines.append(make_line(xn, yn, xv, yv, layer_pair[1]))
        svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_diameter/2, stroke='none', fill='white'))
        svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_drill/2, stroke='none', fill='black'))

        if i > 0:
            xv, yv = outer_via_ring_radius*cos(start_angle), outer_via_ring_radius*sin(start_angle)
            pads.append(make_via(xv, yv, layer_pair))
            if not isclose(via_offset, 0, abs_tol=1e-6):
                lines.append(make_line(x0, y0, xv, yv, layer_pair[0]))
                lines.append(make_line(x0, y0, xv, yv, layer_pair[1]))
            svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_diameter/2, stroke='none', fill='white'))
            svg_vias.append(Tag('circle', cx=xv, cy=yv, r=via_drill/2, stroke='none', fill='black'))

    l_total = clen*twists*2
    print(f'Approximate track length: {l_total:.2f} mm', file=sys.stderr)
    A = copper_thickness/1e3 * trace_width/1e3
    rho = 1.68e-8
    R = l_total/1e3 * rho / A
    print(f'Approximate resistance: {R:g} Ω', file=sys.stderr)

    top_pad = make_pad(1, [layer_pair[0]], outer_radius, 0)
    pads.append(top_pad)
    bottom_pad = make_pad(2, [layer_pair[1]], outer_radius, 0)
    pads.append(bottom_pad)

    svg_stuff += svg_vias

    svg_stuff.append(Tag('path', d=f'M {inner_radius} 0 L {outer_radius} 0', stroke=rainbow[n+1], fill='none',
                         stroke_width='0.05mm', stroke_linecap='round'))
    ntraces = int(turns_per_layer)+1
    alpha = [0] * ntraces
    for i in range(ntraces):
        c = inner_radius + (outer_radius-inner_radius) / turns_per_layer * i
        #dalpha = dy / c
        #dx / dalpha = (outer_radius - inner_radius) / sweeping_angle
        #c * (dx / dy) = (outer_radius - inner_radius) / sweeping_angle
        #dx / dy = (outer_radius - inner_radius) / sweeping_angle / c
        dx = (outer_radius - inner_radius) / sweeping_angle / c
        alpha[i] = atan(dx)
        dy = 0.3
        dx *= dy
        r = trace_width/2 / cos(alpha[i])
        svg_stuff.append(Tag('path', d=f'M {c-r+dx} {-dy} L {c-r-dx} {dy}', stroke=rainbow[n+1], fill='none',
                             stroke_width='0.05mm', stroke_linecap='round'))
        svg_stuff.append(Tag('path', d=f'M {c+r+dx} {-dy} L {c+r-dx} {dy}', stroke=rainbow[n+1], fill='none',
                             stroke_width='0.05mm', stroke_linecap='round'))

        #print(f'spiral angle {degrees(alpha[i]):.2f}', file=sys.stderr)

    for i, (a1, a2) in enumerate(zip(alpha[::-1], alpha[1::])):
        amean = (a2+a1)/2
        pitch = (outer_radius - inner_radius) / turns_per_layer
        clearance = pitch - trace_width
        clearance *= cos(amean)

        x, y = inner_radius + (i + 1/2)*pitch, -0.5
        svg_stuff.append(Tag('text',
                             [f'{clearance:.5f}mm'],
                             x=x,
                             y=y,
                             text_anchor='start',
                             transform=f'rotate(-45 {x} {y})',
                             style=f'font: 1px bold sans-serif; fill: {rainbow[n+1]}'))

    svg_file('/tmp/test.svg', svg_stuff, 100, 100, -50, -50)

    if footprint_name:
        name = footprint_name
    elif outfile:
        name = outfile.stem,
    else:
        name = 'generated_coil'

    if keepout_zone:
        r = outer_diameter/2 + keepout_margin
        tol = 0.05 # mm
        n = ceil(pi / acos(1 - tol/r))
        pts = [(r*cos(a*2*pi/n), r*sin(a*2*pi/n)) for a in range(n)]
        zones = [kicad_pr.Zone(layers=['*.Cu'],
            hatch=kicad_pr.Hatch(),
            filled_areas_thickness=False,
            keepout=kicad_pr.ZoneKeepout(copperpour_allowed=False),
            polygon=kicad_pr.ZonePolygon(pts=kicad_pr.PointList(xy=[kicad_pr.XYCoord(x=x, y=y) for x, y in pts])))]
    else:
        zones = []

    if pcb:
        obj = kicad_pcb.Board.empty_board(
                zones=zones,
                track_segments=[kicad_pcb.TrackSegment.from_footprint_line(line) for line in lines],
                vias=[kicad_pcb.Via.from_pad(pad) for pad in pads if pad.type == kicad_pcb.Atom.thru_hole])
        obj.rebuild_trace_index()
        seg = obj.track_segments[-1]
        traces = []
        end = top_pad
        layer = 'F.Cu'
        while True:
            tr = list(obj.find_connected_traces(end, layers=[layer]))
            traces.append(tr)
            if not isinstance(tr[-1], kicad_pcb.Via):
                break
            layer = 'B.Cu' if layer == 'F.Cu' else 'F.Cu'
            end = tr[-1]
        # remove start pad
        traces[0] = traces[0][1:]

        r = outer_diameter/2 + 20
        if mesh_out:
            traces_to_gmsh(traces, mesh_out, ((-r, -r), (r, r)), copper_thickness=copper_thickness, board_thickness=board_thickness)

        if mag_mesh_out:
            traces_to_gmsh_mag(traces, mag_mesh_out, ((-r, -r), (r, r)), copper_thickness=copper_thickness, board_thickness=board_thickness)

        if mag_mesh_mutual_out:
            m_dx, m_dy, m_dz = mutual_offset_x, mutual_offset_y, mutual_offset_z
            mutual_rotation_z = math.radians(mutual_rotation_z)
            traces_to_gmsh_mag_mutual(traces, mag_mesh_mutual_out, ((-r, -r), (r, r)),
                                      copper_thickness=copper_thickness, board_thickness=board_thickness,
                                      mutual_offset=(m_dx, m_dy, m_dz), mutual_rotation=(0, 0, mutual_rotation_z))

        if magneticalc_out:
            traces_to_magneticalc(traces, magneticalc_out)

#        for trace in traces:
#            print(f'Trace {i}', file=sys.stderr)
#            print(f'  Length: {len(trace)}', file=sys.stderr)
#            print(f'  Start: {trace[0]}', file=sys.stderr)
#            print(f'  End: {trace[-1]}', file=sys.stderr)
#            print(f'  Layer: {trace[1].layer}', file=sys.stderr)

        #for e in obj.find_connected_traces(seg, layers=seg.layer_mask):
        #    print(getattr(e, 'layer', ''), str(e)[:80], file=sys.stderr)
        #nodes, edges = obj.track_skeleton(pads[-1])
        #for node, node_edges in edges.items():
        #    print(f'Node {node} with {len(node_edges)} edges', file=sys.stderr)
        #    for i, e in enumerate(node_edges):
        #        print(f'    Edge {i}', file=sys.stderr)
        #        for elem in e:
        #            print('       ', elem, file=sys.stderr)

    else:
        obj = kicad_fp.Footprint(
                name=name,
                generator=kicad_fp.Atom('GerbonaraTwistedCoilGenV1'),
                layer='F.Cu',
                descr=f"{turns} turn {outer_diameter:.2f} mm diameter twisted coil footprint, inductance approximately {L:.6f} µH. Generated by gerbonara'c Twisted Coil generator, version {__version__}.",
                clearance=clearance,
                zone_connect=0,
                lines=lines,
                arcs=arcs,
                pads=pads,
                zones=zones,
                )

    if clipboard:
        try:
            data = obj.serialize()
            print(f'Running {copy[0]}.', file=sys.stderr)
            proc = subprocess.Popen(copy, stdin=subprocess.PIPE, text=True)
            proc.communicate(data)
            print('passed to wl-clip:', data)
        except FileNotFoundError:
            print(f'Error: --clipboard requires the {copy[0]} and {paste[0]} utilities from {cliputil} to be installed.', file=sys.stderr)
    elif not outfile:
        print(obj.serialize())
    else:
        obj.write(outfile)

if __name__ == '__main__':
    generate()