1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
#!/usr/bin/env python3
import subprocess
import sys
import os
from math import *
from pathlib import Path
from itertools import cycle
from scipy.constants import mu_0
from gerbonara.cad.kicad import pcb as kicad_pcb
from gerbonara.cad.kicad import footprints as kicad_fp
from gerbonara.cad.kicad import graphical_primitives as kicad_gr
from gerbonara.cad.kicad import primitives as kicad_pr
import click
__version__ = '1.0.0'
def point_line_distance(p, l1, l2):
x0, y0 = p
x1, y1 = l1
x2, y2 = l2
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt((x2-x1)**2 + (y2-y1)**2)
def line_line_intersection(l1, l2):
p1, p2 = l1
p3, p4 = l2
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
# https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
px = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
py = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
return px, py
def angle_between_vectors(va, vb):
angle = atan2(vb[1], vb[0]) - atan2(va[1], va[0])
if angle < 0:
angle += 2*pi
return angle
class SVGPath:
def __init__(self, **attrs):
self.d = ''
self.attrs = attrs
def line(self, x, y):
self.d += f'L {x} {y} '
def move(self, x, y):
self.d += f'M {x} {y} '
def arc(self, x, y, r, large, sweep):
self.d += f'A {r} {r} 0 {int(large)} {int(sweep)} {x} {y} '
def close(self):
self.d += 'Z '
def __str__(self):
attrs = ' '.join(f'{key.replace("_", "-")}="{value}"' for key, value in self.attrs.items())
return f'<path {attrs} d="{self.d.rstrip()}"/>'
class SVGCircle:
def __init__(self, r, cx, cy, **attrs):
self.r = r
self.cx, self.cy = cx, cy
self.attrs = attrs
def __str__(self):
attrs = ' '.join(f'{key.replace("_", "-")}="{value}"' for key, value in self.attrs.items())
return f'<circle {attrs} r="{self.r}" cx="{self.cx}" cy="{self.cy}"/>'
def svg_file(fn, stuff, vbw, vbh, vbx=0, vby=0):
with open(fn, 'w') as f:
f.write('<?xml version="1.0" standalone="no"?>\n')
f.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n')
f.write(f'<svg version="1.1" width="{vbw}mm" height="{vbh}mm" viewBox="{vbx} {vby} {vbw} {vbh}" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">>\n')
for foo in stuff:
f.write(str(foo))
f.write('</svg>\n')
@click.command()
@click.argument('outfile', required=False, type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--footprint-name', help="Name for the generated footprint. Default: Output file name sans extension.")
@click.option('--target-layer', default='F.Cu', help="Target KiCad layer for the generated footprint. Default: F.Cu.")
@click.option('--jumper-layer', default='B.Cu', help="KiCad layer for jumper connections. Default: B.Cu.")
@click.option('--turns', type=int, default=5, help='Number of turns')
@click.option('--diameter', type=float, default=50, help='Outer diameter [mm]')
@click.option('--trace-width', type=float, default=0.15)
@click.option('--via-diameter', type=float, default=0.6)
@click.option('--via-drill', type=float, default=0.3)
@click.option('--keepout-zone/--no-keepout-zone', default=True, help='Add a keepout are to the footprint (default: yes)')
@click.option('--keepout-margin', type=float, default=5, help='Margin between outside of coil and keepout area (mm, default: 5)')
@click.option('--twist-width', type=float, default=20, help='Width of twist versus straight coil in percent (0-100, default: 20)')
@click.option('--num-twists', type=int, default=1, help='Number of twists per revolution (default: 1)')
@click.option('--clearance', type=float, default=0.15)
@click.option('--clipboard/--no-clipboard', help='Use clipboard integration (requires wl-clipboard)')
@click.option('--counter-clockwise/--clockwise', help='Direction of generated spiral. Default: clockwise when wound from the inside.')
def generate(outfile, turns, diameter, via_diameter, via_drill, trace_width, clearance, footprint_name, target_layer,
jumper_layer, twist_width, num_twists, clipboard, counter_clockwise, keepout_zone, keepout_margin):
if 'WAYLAND_DISPLAY' in os.environ:
copy, paste, cliputil = ['wl-copy'], ['wl-paste'], 'xclip'
else:
copy, paste, cliputil = ['xclip', '-i', '-sel', 'clipboard'], ['xclip', '-o', '-sel' 'clipboard'], 'wl-clipboard'
out_path = SVGPath(fill='none', stroke='black', stroke_width=trace_width, stroke_linejoin='round', stroke_linecap='round')
jumper_path = SVGPath(fill='none', stroke='gray', stroke_width=trace_width, stroke_linejoin='round', stroke_linecap='round')
svg_stuff = [jumper_path, out_path]
pitch = clearance + trace_width
twist_angle = 2*pi / (turns * num_twists - 1)
twist_width = twist_angle * twist_width/100
via_diameter = max(trace_width, via_diameter)
# See https://coil32.net/pcb-coil.html for details
d_inside = diameter - 2*(pitch*turns - clearance)
d_avg = (diameter + d_inside)/2
phi = (diameter - d_inside) / (diameter + d_inside)
c1, c2, c3, c4 = 1.00, 2.46, 0.00, 0.20
L = mu_0 * turns**2 * d_avg*1e3 * c1 / 2 * (log(c2/phi) + c3*phi + c4*phi**2)
print(f'Outer diameter: {diameter:g} mm')
print(f'Average diameter: {d_avg:g} mm')
print(f'Inner diameter: {d_inside:g} mm')
print(f'Fill factor: {phi:g}')
print(f'Approximate inductance: {L:g} µH')
make_pad = lambda num, x, y: kicad_fp.Pad(
number=str(num),
type=kicad_fp.Atom.smd,
shape=kicad_fp.Atom.circle,
at=kicad_fp.AtPos(x=x, y=y),
size=kicad_fp.XYCoord(x=trace_width, y=trace_width),
layers=[target_layer],
clearance=clearance,
zone_connect=0)
make_line = lambda x1, y1, x2, y2, layer=target_layer: kicad_fp.Line(
start=kicad_fp.XYCoord(x=x1, y=y1),
end=kicad_fp.XYCoord(x=x2, y=y2),
layer=layer,
stroke=kicad_fp.Stroke(width=trace_width))
make_arc = lambda x1, y1, x2, y2, xc, yc, layer=target_layer: kicad_fp.Arc(
start=kicad_fp.XYCoord(x=x1, y=y1),
mid=kicad_fp.XYCoord(x=xc, y=yc),
end=kicad_fp.XYCoord(x=x2, y=y2),
layer=layer,
stroke=kicad_fp.Stroke(width=trace_width))
make_via = lambda x, y: kicad_fp.Pad(number="NC",
type=kicad_fp.Atom.thru_hole,
shape=kicad_fp.Atom.circle,
at=kicad_fp.AtPos(x=x, y=y),
size=kicad_fp.XYCoord(x=via_diameter, y=via_diameter),
drill=kicad_fp.Drill(diameter=via_drill),
layers=[target_layer, jumper_layer],
clearance=clearance,
zone_connect=0)
pads = []
lines = []
arcs = []
for n in range(turns * num_twists - 1):
for k in range(turns):
r = diameter/2 - trace_width/2 - k*pitch
a1 = n*twist_angle + twist_width/2
a2 = a1 + twist_angle - twist_width
x1, y1 = r*cos(a1), r*sin(a1)
out_path.move(x1, y1)
x2, y2 = r*cos(a2), r*sin(a2)
out_path.line(x2, y2)
a3 = (a1 + a2) / 2
xm, ym = r*cos(a3), r*sin(a3)
arcs.append(make_arc(x2, y2, x1, y1, xm, ym))
for k in range(turns-1):
r1 = diameter/2 - trace_width/2 - (k+1)*pitch
r2 = diameter/2 - trace_width/2 - k*pitch
a1 = n*twist_angle - twist_width/2
a2 = a1 + twist_width
x1, y1 = r1*cos(a1), r1*sin(a1)
out_path.move(x1, y1)
x2, y2 = r2*cos(a2), r2*sin(a2)
out_path.line(x2, y2)
a3 = (a1 + a2) / 2
r3 = (r1 + r2) / 2
xm, ym = r3*cos(a3), r3*sin(a3)
arcs.append(make_arc(x2, y2, x1, y1, xm, ym))
rs = diameter/2 - trace_width/2
rv = rs - trace_width/2 + via_diameter/2
a = n*twist_angle - twist_width/2
x1, y1 = rs*cos(a), rs*sin(a)
out_path.move(x1, y1)
xv1, yv1 = rv*cos(a), rv*sin(a)
out_path.line(xv1, yv1)
svg_stuff.append(SVGCircle(via_diameter/2, xv1, yv1, fill='red'))
pads.append(make_via(xv1, yv1))
jumper_path.move(xv1, yv1)
lines.append(make_line(x1, y1, xv1, yv1))
a += twist_width
rs = diameter/2 - trace_width/2 - (turns-1)*pitch
rv = rs + trace_width/2 - via_diameter/2
x1, y1 = rs*cos(a), rs*sin(a)
out_path.move(x1, y1)
xv2, yv2 = rv*cos(a), rv*sin(a)
out_path.line(xv2, yv2)
svg_stuff.append(SVGCircle(via_diameter/2, xv2, yv2, fill='red'))
pads.append(make_via(xv2, yv2))
lines.append(make_line(x1, y1, xv2, yv2))
if n > 0:
jumper_path.line(xv2, yv2)
lines.append(make_line(xv1, yv1, xv2, yv2, jumper_layer))
else:
pads.append(make_pad(1, xv1, yv1))
pads.append(make_pad(2, xv2, yv2))
svg_file('/tmp/test.svg', svg_stuff, 100, 100, -50, -50)
if counter_clockwise:
for p in pads:
p.at.y = -p.at.y
for l in lines:
l.start.y = -l.start.y
l.end.y = -l.end.y
for a in arcs:
a.start.y = -a.start.y
a.end.y = -a.end.y
if footprint_name:
name = footprint_name
elif outfile:
name = outfile.stem,
else:
name = 'generated_coil'
if keepout_zone:
r = diameter/2 + keepout_margin
tol = 0.05 # mm
n = ceil(pi / acos(1 - tol/r))
pts = [(r*cos(a*2*pi/n), r*sin(a*2*pi/n)) for a in range(n)]
zones = [kicad_pr.Zone(layers=['*.Cu'],
hatch=kicad_pr.Hatch(),
filled_areas_thickness=False,
keepout=kicad_pr.ZoneKeepout(copperpour_allowed=False),
polygon=kicad_pr.ZonePolygon(pts=kicad_pr.PointList(xy=[kicad_pr.XYCoord(x=x, y=y) for x, y in pts])))]
else:
zones = []
fp = kicad_fp.Footprint(
name=name,
generator=kicad_fp.Atom('GerbonaraTwistedCoilGenV1'),
layer='F.Cu',
descr=f"{turns} turn {diameter:.2f} mm diameter twisted coil footprint, inductance approximately {L:.6f} µH. Generated by gerbonara'c Twisted Coil generator, version {__version__}.",
clearance=clearance,
zone_connect=0,
lines=lines,
arcs=arcs,
pads=pads,
zones=zones,
)
if clipboard:
try:
print(f'Running {copy[0]}.')
proc = subprocess.Popen(copy, stdin=subprocess.PIPE, text=True)
proc.communicate(fp.serialize())
except FileNotFoundError:
print(f'Error: --clipboard requires the {copy[0]} and {paste[0]} utilities from {cliputil} to be installed.', file=sys.stderr)
elif not outfile:
print(fp.serialize())
else:
fp.write(outfile)
if __name__ == '__main__':
generate()
|