1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Copyright 2022 Jan Sebastian Götte <gerbonara@jaseg.de>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
gerber.utils
============
**Gerber and Excellon file handling utilities**
This module provides utility functions for working with Gerber and Excellon files.
"""
from dataclasses import dataclass
import os
import re
import textwrap
from functools import reduce
from enum import Enum
import math
class UnknownStatementWarning(Warning):
""" Gerbonara found an unknown Gerber or Excellon statement. """
pass
class RegexMatcher:
""" Internal parsing helper """
def __init__(self):
self.mapping = {}
def match(self, regex):
def wrapper(fun):
nonlocal self
self.mapping[regex] = fun
return fun
return wrapper
def handle(self, inst, line):
for regex, handler in self.mapping.items():
if (match := re.fullmatch(regex, line)):
handler(inst, match)
return True
else:
return False
@dataclass(frozen=True, slots=True)
class LengthUnit:
""" Convenience length unit class. Used in :py:class:`.GraphicObject` and :py:class:`.Aperture` to store lenght
information. Provides a number of useful unit conversion functions.
Singleton, use only global instances ``utils.MM`` and ``utils.Inch``.
"""
name: str
shorthand: str
this_in_mm: float
def convert_from(self, unit, value):
""" Convert ``value`` from ``unit`` into this unit.
:param unit: ``MM``, ``Inch`` or one of the strings ``"mm"`` or ``"inch"``
:param float value:
:rtype: float
"""
if isinstance(unit, str):
unit = units[unit]
if unit == self or unit is None or value is None:
return value
return value * unit.this_in_mm / self.this_in_mm
def convert_to(self, unit, value):
""" :py:meth:`.LengthUnit.convert_from` but in reverse. """
if isinstance(unit, str):
unit = to_unit(unit)
if unit is None:
return value
return unit.convert_from(self, value)
def convert_bounds_from(self, unit, value):
""" :py:meth:`.LengthUnit.convert_from` but for ((min_x, min_y), (max_x, max_y)) bounding box tuples. """
if value is None:
return None
(min_x, min_y), (max_x, max_y) = value
min_x = self.convert_from(unit, min_x)
min_y = self.convert_from(unit, min_y)
max_x = self.convert_from(unit, max_x)
max_y = self.convert_from(unit, max_y)
return (min_x, min_y), (max_x, max_y)
def convert_bounds_to(self, unit, value):
""" :py:meth:`.LengthUnit.convert_to` but for ((min_x, min_y), (max_x, max_y)) bounding box tuples. """
if value is None:
return None
(min_x, min_y), (max_x, max_y) = value
min_x = self.convert_to(unit, min_x)
min_y = self.convert_to(unit, min_y)
max_x = self.convert_to(unit, max_x)
max_y = self.convert_to(unit, max_y)
return (min_x, min_y), (max_x, max_y)
def format(self, value):
""" Return a human-readdable string representing value in this unit.
:param float value:
:returns: something like "3mm"
:rtype: str
"""
return f'{value:.3f}{self.shorthand}' if value is not None else ''
def __call__(self, value, unit):
""" Convenience alias for :py:meth:`.LengthUnit.convert_from` """
return self.convert_from(unit, value)
def __eq__(self, other):
if isinstance(other, str):
return other.lower() in (self.name, self.shorthand)
else:
return id(self) == id(other)
# This class is a singleton, we don't want copies around
def __copy__(self):
return self
def __deepcopy__(self, memo):
return self
def __str__(self):
return self.shorthand
def __repr__(self):
return f'<LengthUnit {self.name}>'
MILLIMETERS_PER_INCH = 25.4
Inch = LengthUnit('inch', 'in', MILLIMETERS_PER_INCH)
MM = LengthUnit('millimeter', 'mm', 1)
units = {'inch': Inch, 'mm': MM, None: None}
def _raise_error(*args, **kwargs):
raise SystemError('LengthUnit is a singleton. Use gerbonara.utils.MM or gerbonara.utils.Inch. Please do not invent '
'your own length units, the imperial system is already messed up enough.')
LengthUnit.__init__ = _raise_error
def to_unit(name):
""" Convert string ``name`` into a registered length unit. Returns ``None`` if the argument cannot be converted.
:param str name: ``'mm'`` or ``'inch'``
:returns: ``MM``, ``Inch`` or ``None``
:rtype: :py:class:`.LengthUnit` or ``None``
"""
if name is None:
return None
if isinstance(name, LengthUnit):
return name
if isinstance(name, str):
name = name.lower()
if name in units:
return units[name]
raise ValueError(f'Invalid unit {name!r}. Should be either "mm", "inch" or None for no unit.')
class InterpMode(Enum):
""" Gerber / Excellon interpolation mode. """
#: straight line
LINEAR = 0
#: clockwise circular arc
CIRCULAR_CW = 1
#: counterclockwise circular arc
CIRCULAR_CCW = 2
def decimal_string(value, precision=6, padding=False):
""" Convert float to string with limited precision
Parameters
----------
value : float
A floating point value.
precision :
Maximum number of decimal places to print
Returns
-------
value : string
The specified value as a string.
"""
floatstr = '%0.10g' % value
integer = None
decimal = None
if '.' in floatstr:
integer, decimal = floatstr.split('.')
elif ',' in floatstr:
integer, decimal = floatstr.split(',')
else:
integer, decimal = floatstr, "0"
if len(decimal) > precision:
decimal = decimal[:precision]
elif padding:
decimal = decimal + (precision - len(decimal)) * '0'
if integer or decimal:
return ''.join([integer, '.', decimal])
else:
return int(floatstr)
def rotate_point(x, y, angle, cx=0, cy=0):
""" Rotate point (x,y) around (cx,cy) by ``angle`` radians clockwise. """
return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
def sweep_angle(cx, cy, x1, y1, x2, y2, clockwise):
""" Calculate absolute sweep angle of arc. This is always a positive number.
:returns: Angle in clockwise radian between ``0`` and ``2*math.pi``
:rtype: float
"""
x1, y1 = x1-cx, y1-cy
x2, y2 = x2-cx, y2-cy
a1, a2 = math.atan2(y1, x1), math.atan2(y2, x2)
f = abs(a2 - a1)
if not clockwise:
if a2 > a1:
return a2 - a1
else:
return 2*math.pi - abs(a2 - a1)
else:
if a1 > a2:
return a1 - a2
else:
return 2*math.pi - abs(a1 - a2)
def approximate_arc(cx, cy, x1, y1, x2, y2, clockwise, max_error=1e-2, clip_max_error=True):
# TODO the max_angle calculation below is a bit off -- we over-estimate the error, and thus produce finer
# results than necessary. Fix this.
r = math.dist((x1, y1), (cx, cy))
if clip_max_error:
# 1 - math.sqrt(1 - 0.5*math.sqrt(2))
max_error = min(max_error, r*0.4588038998538031)
elif max_error >= r:
yield (x1, y1)
yield (x2, y2)
return
# see https://www.mathopenref.com/sagitta.html
l = math.sqrt(r**2 - (r - max_error)**2)
angle_max = math.asin(l/r)
alpha = sweep_angle(cx, cy, x1, y1, x2, y2, clockwise)
num_segments = math.ceil(alpha / angle_max)
angle = alpha / num_segments
if not clockwise:
angle = -angle
for i in range(num_segments + 1):
yield rotate_point(x1, y1, i*angle, cx, cy)
def min_none(a, b):
""" Like the ``min(..)`` builtin, but if either value is ``None``, returns the other. """
if a is None:
return b
if b is None:
return a
return min(a, b)
def max_none(a, b):
""" Like the ``max(..)`` builtin, but if either value is ``None``, returns the other. """
if a is None:
return b
if b is None:
return a
return max(a, b)
def add_bounds(b1, b2):
""" Add/union multiple bounding boxes.
:param tuple b1: ``((min_x, min_y), (max_x, max_y))``
:param tuple b2: ``((min_x, min_y), (max_x, max_y))``
:returns: ``((min_x, min_y), (max_x, max_y))``
:rtype: tuple
"""
return sum_bounds((b1, b2))
def offset_bounds(bounds, dx=0, dy=0):
(min_x, min_y), (max_x, max_y) = bounds
return (min_x+dx, min_y+dy), (max_x+dx, max_y+dy)
def sum_bounds(bounds, *, default=None):
""" Add/union multiple bounding boxes.
:param bounds: each arg is one bounding box in ``((min_x, min_y), (max_x, max_y))`` format
:returns: ``((min_x, min_y), (max_x, max_y))``
:rtype: tuple
"""
bounds = iter([ b for b in bounds if b is not None ])
for (min_x, min_y), (max_x, max_y) in bounds:
break
else:
return default
for (min_x_2, min_y_2), (max_x_2, max_y_2) in bounds:
min_x, min_y = min_none(min_x, min_x_2), min_none(min_y, min_y_2)
max_x, max_y = max_none(max_x, max_x_2), max_none(max_y, max_y_2)
return ((min_x, min_y), (max_x, max_y))
class Tag:
""" Helper class to ease creation of SVG. All API functions that create SVG allow you to substitute this with your
own implementation by passing a ``tag`` parameter. """
def __init__(self, name, children=None, root=False, **attrs):
if (fill := attrs.get('fill')) and isinstance(fill, tuple):
attrs['fill'], attrs['fill-opacity'] = fill
if (stroke := attrs.get('stroke')) and isinstance(stroke, tuple):
attrs['stroke'], attrs['stroke-opacity'] = stroke
self.name, self.attrs = name, attrs
self.children = children or []
self.root = root
def __str__(self):
prefix = '<?xml version="1.0" encoding="utf-8"?>\n' if self.root else ''
opening = ' '.join([self.name] + [f'{key.replace("__", ":").replace("_", "-")}="{value}"' for key, value in self.attrs.items()])
if self.children:
children = '\n'.join(textwrap.indent(str(c), ' ') for c in self.children)
return f'{prefix}<{opening}>\n{children}\n</{self.name}>'
else:
return f'{prefix}<{opening}/>'
def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
""" Calculate bounding box of a circular arc given in Gerber notation (i.e. with center relative to first point).
:returns: ``((x_min, y_min), (x_max, y_max))``
"""
# This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
# happens to be anything but in practice.
#
# Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
# problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
#
# This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
# sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
#
# cx, cy are in absolute coordinates.
# Center arc on cx, cy
x1 -= cx
x2 -= cx
y1 -= cy
y2 -= cy
clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
# Calculate radius
r = math.sqrt(x1**2 + y1**2)
# Special case: Gerber defines an arc with p1 == p2 as a full circle.
if math.isclose(x1, x2) and math.isclose(y1, y2):
return (cx-r, cy-r), (cx+r, cy+r)
# Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
# Note that we assume the y axis points upwards, as in Gerber and maths.
# SVG has its y axis pointing downwards.
p1_west = x1 < 0
p1_north = y1 > 0
p2_west = x2 < 0
p2_north = y2 > 0
# Calculate bounding box of P1 and P2
min_x = min(x1, x2)
min_y = min(y1, y2)
max_x = max(x1, x2)
max_y = max(y1, y2)
# North
# ^
# |
# |(0,0)
# West <-----X-----> East
# |
# +Y |
# ^ v
# | South
# |
# +-----> +X
#
# Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
# Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
# Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
# point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
# absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
# intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
# corresponding coordinate of the bounding box without min()/max()'ing first.
# Handle north/south halfplanes
if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
max_y = r # add north to bounding box
else: # arc is counter-clockwise west -> east or clockwise east -> west
min_y = -r # south
else: # Arc starts and ends in same halfplane west/east
# Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
# angle comparisons.
small_arc_is_north_to_south = y1 > y2
small_arc_is_clockwise = small_arc_is_north_to_south != p1_west
if small_arc_is_clockwise != clockwise:
min_y, max_y = -r, r # intersect aabb with both north and south
# Handle west/east halfplanes
if p1_north != p2_north:
if p1_north == clockwise:
max_x = r # east
else:
min_x = -r # west
else:
small_arc_is_west_to_east = x1 < x2
small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
if small_arc_is_clockwise != clockwise:
min_x, max_x = -r, r # intersect aabb with both north and south
return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
def convex_hull(points):
'''
Returns points on convex hull in CCW order according to Graham's scan algorithm.
By Tom Switzer <thomas.switzer@gmail.com>.
'''
# https://gist.github.com/arthur-e/5cf52962341310f438e96c1f3c3398b8
TURN_LEFT, TURN_RIGHT, TURN_NONE = (1, -1, 0)
def cmp(a, b):
return (a > b) - (a < b)
def turn(p, q, r):
return cmp((q[0] - p[0])*(r[1] - p[1]) - (r[0] - p[0])*(q[1] - p[1]), 0)
def keep_left(hull, r):
while len(hull) > 1 and turn(hull[-2], hull[-1], r) != TURN_LEFT:
hull.pop()
if not len(hull) or hull[-1] != r:
hull.append(r)
return hull
points = sorted(points)
l = reduce(keep_left, points, [])
u = reduce(keep_left, reversed(points), [])
return l.extend(u[i] for i in range(1, len(u) - 1)) or l
def point_line_distance(l1, l2, p):
""" Calculate distance between infinite line through l1 and l2, and point p. """
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
x1, y1 = l1
x2, y2 = l2
x0, y0 = p
length = math.dist(l1, l2)
if math.isclose(length, 0):
return math.dist(l1, p)
return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length
def svg_arc(old, new, center, clockwise):
""" Format an SVG circular arc "A" path data entry given an arc in Gerber notation (but with center in absolute
coordinates).
:rtype: str
"""
r = float(math.dist(old, center))
# invert sweep flag since the svg y axis is mirrored
sweep_flag = int(not clockwise)
# In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc"
# in SVG, we have to split it into two.
if math.isclose(math.dist(old, new), 0):
intermediate = old[0] + 2*(center[0]-old[0]), old[1] + 2*(center[1]-old[1])
# Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of
# a circular cutin
return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {float(intermediate[0]):.6} {float(intermediate[1]):.6} ' +\
f'A {r:.6} {r:.6} 0 1 {sweep_flag} {float(new[0]):.6} {float(new[1]):.6}'
else: # normal case
d = point_line_distance(old, new, (center[0], center[1]))
large_arc = int((d < 0) == clockwise)
return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {float(new[0]):.6} {float(new[1]):.6}'
def svg_rotation(angle_rad, cx=0, cy=0):
if math.isclose(angle_rad, 0.0, abs_tol=1e-3):
return {}
else:
return {'transform': f'rotate({float(math.degrees(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'}
def setup_svg(tags, bounds, margin=0, arg_unit=MM, svg_unit=MM, pagecolor='white', tag=Tag, inkscape=False):
(min_x, min_y), (max_x, max_y) = svg_unit.convert_bounds_from(arg_unit, bounds)
if margin:
margin = svg_unit(margin, arg_unit)
min_x -= margin
min_y -= margin
max_x += margin
max_y += margin
w, h = max_x - min_x, max_y - min_y
w = 1.0 if math.isclose(w, 0.0) else w
h = 1.0 if math.isclose(h, 0.0) else h
if inkscape:
tags.insert(0, tag('sodipodi:namedview', [], id='namedview1', pagecolor=pagecolor,
inkscape__document_units=svg_unit.shorthand))
namespaces = dict(
xmlns="http://www.w3.org/2000/svg",
xmlns__xlink="http://www.w3.org/1999/xlink",
xmlns__sodipodi='http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd',
xmlns__inkscape='http://www.inkscape.org/namespaces/inkscape')
else:
namespaces = dict(
xmlns="http://www.w3.org/2000/svg",
xmlns__xlink="http://www.w3.org/1999/xlink")
svg_unit = 'in' if svg_unit == 'inch' else 'mm'
# TODO export apertures as <uses> where reasonable.
return tag('svg', tags,
width=f'{w}{svg_unit}', height=f'{h}{svg_unit}',
viewBox=f'{min_x} {min_y} {w} {h}',
style=f'background-color:{pagecolor}',
**namespaces,
root=True)
def point_in_polygon(point, poly):
# https://stackoverflow.com/questions/217578/how-can-i-determine-whether-a-2d-point-is-within-a-polygon
# https://wrfranklin.org/Research/Short_Notes/pnpoly.html
if not poly:
return False
res = False
tx, ty = point
xp, yp = poly[-1]
for x, y in poly:
if yp == ty == y and ((x > tx) != (xp > tx)): # test point on horizontal segment
return True
if xp == tx == x and ((y > ty) != (yp > ty)): # test point on vertical segment
return True
if ((y > ty) != (yp > ty)):
tmp = ((xp-x) * (ty-y) / (yp-y) + x)
if tx == tmp: # test point on diagonal segment
return True
elif tx < tmp:
res = not res
xp, yp = x, y
return res
def bbox_intersect(a, b):
if a is None or b is None:
return False
(xa_min, ya_min), (xa_max, ya_max) = a
(xb_min, yb_min), (xb_max, yb_max) = b
x_overlap = not (xa_max < xb_min or xb_max < xa_min)
y_overlap = not (ya_max < yb_min or yb_max < ya_min)
return x_overlap and y_overlap
|