1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
gerber.utils
============
**Gerber and Excellon file handling utilities**
This module provides utility functions for working with Gerber and Excellon
files.
"""
import os
from enum import Enum
from math import radians, sin, cos, sqrt, atan2, pi
class LengthUnit:
def __init__(self, name, shorthand, this_in_mm):
self.name = name
self.shorthand = shorthand
self.factor = this_in_mm
def convert_from(self, unit, value):
if isinstance(unit, str):
unit = units[unit]
if unit == self or unit is None or value is None:
return value
return value * unit.factor / self.factor
def convert_to(self, unit, value):
if isinstance(unit, str):
unit = to_unit(unit)
if unit is None:
return value
return unit.convert_from(self, value)
def __call__(self, value, unit):
return self.convert_from(unit, value)
def __eq__(self, other):
if isinstance(other, str):
return other.lower() in (self.name, self.shorthand)
else:
return id(self) == id(other)
# This class is a singleton, we don't want copies around
def __copy__(self):
return self
def __deepcopy__(self, memo):
return self
MILLIMETERS_PER_INCH = 25.4
Inch = LengthUnit('inch', 'in', MILLIMETERS_PER_INCH)
MM = LengthUnit('millimeter', 'mm', 1)
units = {'inch': Inch, 'mm': MM, None: None}
to_unit = lambda name: units[name]
class InterpMode(Enum):
LINEAR = 0
CIRCULAR_CW = 1
CIRCULAR_CCW = 2
def decimal_string(value, precision=6, padding=False):
""" Convert float to string with limited precision
Parameters
----------
value : float
A floating point value.
precision :
Maximum number of decimal places to print
Returns
-------
value : string
The specified value as a string.
"""
floatstr = '%0.10g' % value
integer = None
decimal = None
if '.' in floatstr:
integer, decimal = floatstr.split('.')
elif ',' in floatstr:
integer, decimal = floatstr.split(',')
else:
integer, decimal = floatstr, "0"
if len(decimal) > precision:
decimal = decimal[:precision]
elif padding:
decimal = decimal + (precision - len(decimal)) * '0'
if integer or decimal:
return ''.join([integer, '.', decimal])
else:
return int(floatstr)
def validate_coordinates(position):
if position is not None:
if len(position) != 2:
raise TypeError('Position must be a tuple (n=2) of coordinates')
else:
for coord in position:
if not (isinstance(coord, int) or isinstance(coord, float)):
raise TypeError('Coordinates must be integers or floats')
def rotate_point(point, angle, center=(0.0, 0.0)):
""" Rotate a point about another point.
Parameters
-----------
point : tuple(<float>, <float>)
Point to rotate about origin or center point
angle : float
Angle to rotate the point [degrees]
center : tuple(<float>, <float>)
Coordinates about which the point is rotated. Defaults to the origin.
Returns
-------
rotated_point : tuple(<float>, <float>)
`point` rotated about `center` by `angle` degrees.
"""
angle = radians(angle)
cos_angle = cos(angle)
sin_angle = sin(angle)
return (
cos_angle * (point[0] - center[0]) - sin_angle * (point[1] - center[1]) + center[0],
sin_angle * (point[0] - center[0]) + cos_angle * (point[1] - center[1]) + center[1])
def nearly_equal(point1, point2, ndigits = 6):
'''Are the points nearly equal'''
return round(point1[0] - point2[0], ndigits) == 0 and round(point1[1] - point2[1], ndigits) == 0
def sq_distance(point1, point2):
diff1 = point1[0] - point2[0]
diff2 = point1[1] - point2[1]
return diff1 * diff1 + diff2 * diff2
|