1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
import subprocess
from pathlib import Path
import tempfile
import os
from functools import total_ordering
import shutil
import bs4
from contextlib import contextmanager
import numpy as np
from PIL import Image
@total_ordering
class ImageDifference:
def __init__(self, value, histogram):
self.value = value
self.histogram = histogram
def __float__(self):
return float(self.value)
def __eq__(self, other):
return float(self) == float(other)
def __lt__(self, other):
return float(self) < float(other)
def __str__(self):
return str(float(self))
@total_ordering
class Histogram:
def __init__(self, value, size):
self.value, self.size = value, size
def __eq__(self, other):
other = np.array(other)
other[other == None] = self.value[other == None]
return (self.value == other).all()
def __lt__(self, other):
other = np.array(other)
other[other == None] = self.value[other == None]
return (self.value <= other).all()
def __getitem__(self, index):
return self.value[index]
def __str__(self):
return f'{list(self.value)} size={self.size}'
def run_cargo_cmd(cmd, args, **kwargs):
if cmd.upper() in os.environ:
return subprocess.run([os.environ[cmd.upper()], *args], **kwargs)
try:
return subprocess.run([cmd, *args], **kwargs)
except FileNotFoundError:
return subprocess.run([str(Path.home() / '.cargo' / 'bin' / cmd), *args], **kwargs)
def svg_to_png(in_svg, out_png, dpi=100):
run_cargo_cmd('resvg', ['--dpi', str(dpi), in_svg, out_png], check=True, stdout=subprocess.DEVNULL)
def gerbv_export(in_gbr, out_svg, format='svg', origin=(0, 0), size=(6, 6), fg='#ffffff'):
x, y = origin
w, h = size
cmd = ['gerbv', '-x', format,
'--border=0',
f'--origin={x:.6f}x{y:.6f}', f'--window_inch={w:.6f}x{h:.6f}',
f'--foreground={fg}',
'-o', str(out_svg), str(in_gbr)]
subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
@contextmanager
def svg_soup(filename):
with open(filename, 'r') as f:
soup = bs4.BeautifulSoup(f.read(), 'xml')
yield soup
with open(filename, 'w') as f:
f.write(str(soup))
def cleanup_clips(soup):
for group in soup.find_all('g'):
# gerbv uses Cairo's SVG canvas. Cairo's SVG canvas is kind of broken. It has no support for unit
# handling at all, which means the output files just end up being in pixels at 72 dpi. Further, it
# seems gerbv's aperture macro rendering interacts poorly with Cairo's SVG export. gerbv renders
# aperture macros into a new surface, which for some reason gets clipped by Cairo to the given
# canvas size. This is just wrong, so we just nuke the clip path from these SVG groups here.
#
# Apart from being graphically broken, this additionally causes very bad rendering performance.
del group['clip-path']
def cleanup_gerbv_svg(filename):
with svg_soup(filename) as soup:
cleanup_clips(soup)
def gerber_difference(reference, actual, diff_out=None, svg_transform=None, size=(10,10)):
with tempfile.NamedTemporaryFile(suffix='.svg') as act_svg,\
tempfile.NamedTemporaryFile(suffix='.svg') as ref_svg:
gerbv_export(reference, ref_svg.name, size=size, format='svg')
gerbv_export(actual, act_svg.name, size=size, format='svg')
with svg_soup(ref_svg.name) as soup:
if svg_transform is not None:
soup.find('g', attrs={'id': 'surface1'})['transform'] = svg_transform
cleanup_clips(soup)
with svg_soup(act_svg.name) as soup:
cleanup_clips(soup)
return svg_difference(ref_svg.name, act_svg.name, diff_out=diff_out)
def gerber_difference_merge(ref1, ref2, actual, diff_out=None, composite_out=None, svg_transform1=None, svg_transform2=None, size=(10,10)):
with tempfile.NamedTemporaryFile(suffix='.svg') as act_svg,\
tempfile.NamedTemporaryFile(suffix='.svg') as ref1_svg,\
tempfile.NamedTemporaryFile(suffix='.svg') as ref2_svg:
gerbv_export(ref1, ref1_svg.name, size=size, format='svg')
gerbv_export(ref2, ref2_svg.name, size=size, format='svg')
gerbv_export(actual, act_svg.name, size=size, format='svg')
with svg_soup(ref1_svg.name) as soup1:
if svg_transform1 is not None:
soup1.find('g', attrs={'id': 'surface1'})['transform'] = svg_transform1
cleanup_clips(soup1)
with svg_soup(ref2_svg.name) as soup2:
if svg_transform2 is not None:
soup2.find('g', attrs={'id': 'surface1'})['transform'] = svg_transform2
cleanup_clips(soup2)
defs1 = soup1.find('defs')
if not defs1:
defs1 = soup1.new_tag('defs')
soup1.find('svg').insert(0, defs1)
defs2 = soup2.find('defs')
if defs2:
defs2 = defs2.extract()
# explicitly convert .contents into list here and below because else bs4 stumbles over itself
# iterating because we modify the tree in the loop body.
for c in list(defs2.contents):
if hasattr(c, 'attrs'):
c['id'] = 'gn-merge-b-' + c.attrs.get('id', str(id(c)))
defs1.append(c)
for use in soup2.find_all('use', recursive=True):
if (href := use.get('xlink:href', '')).startswith('#'):
use['xlink:href'] = f'#gn-merge-b-{href[1:]}'
svg1 = soup1.find('svg')
for c in list(soup2.find('svg').contents):
if hasattr(c, 'attrs'):
c['id'] = 'gn-merge-b-' + c.attrs.get('id', str(id(c)))
svg1.append(c)
if composite_out:
shutil.copyfile(ref1_svg.name, composite_out)
with svg_soup(act_svg.name) as soup:
cleanup_clips(soup)
return svg_difference(ref1_svg.name, act_svg.name, diff_out=diff_out)
def svg_difference(reference, actual, diff_out=None):
with tempfile.NamedTemporaryFile(suffix='-ref.png') as ref_png,\
tempfile.NamedTemporaryFile(suffix='-act.png') as act_png:
svg_to_png(reference, ref_png.name)
svg_to_png(actual, act_png.name)
return image_difference(ref_png.name, act_png.name, diff_out=diff_out)
def image_difference(reference, actual, diff_out=None):
ref = np.array(Image.open(reference)).astype(float)
out = np.array(Image.open(actual)).astype(float)
ref, out = ref.mean(axis=2), out.mean(axis=2) # convert to grayscale
# TODO blur images here before comparison to mitigate aliasing issue
delta = np.abs(out - ref).astype(float) / 255
if diff_out:
Image.fromarray((delta*255).astype(np.uint8), mode='L').save(diff_out)
hist, _bins = np.histogram(delta, bins=10, range=(0, 1))
return (ImageDifference(delta.mean(), hist),
ImageDifference(delta.max(), hist),
Histogram(hist, out.size))
|