summaryrefslogtreecommitdiff
path: root/gerbonara/gerber/rs274x.py
blob: 1ab030c9f508a560fc4980346892f26d79458f69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
#! /usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
# Copyright 2021 Jan Götte <code@jaseg.de>
# Modified from parser.py by Paulo Henrique Silva <ph.silva@gmail.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" This module provides an RS-274-X class and parser.
"""

import copy
import json
import os
import re
import sys
import warnings
from pathlib import Path
from itertools import count, chain
from io import StringIO

from .gerber_statements import *
from .primitives import *
from .cam import CamFile, FileSettings
from .utils import sq_distance, rotate_point



class GerberFile(CamFile):
    """ A class representing a single gerber file

    The GerberFile class represents a single gerber file.

    Parameters
    ----------
    statements : list
        list of gerber file statements

    settings : dict
        Dictionary of gerber file settings

    filename : string
        Filename of the source gerber file

    Attributes
    ----------
    comments: list of strings
        List of comments contained in the gerber file.

    size : tuple, (<float>, <float>)
        Size in [self.units] of the layer described by the gerber file.

    bounds: tuple, ((<float>, <float>), (<float>, <float>))
        boundaries of the layer described by the gerber file.
        `bounds` is stored as ((min x, max x), (min y, max y))

    """

    def __init__(self, statements, settings, primitives, apertures, filename=None):
        super(GerberFile, self).__init__(statements, settings, primitives, filename)

        self.apertures = apertures

        # always explicitly set polarity
        self.statements.insert(0, LPParamStmt('LP', 'dark'))

        self.aperture_macros = {}
        self.aperture_defs = []
        self.main_statements = []

        self.context = GerberContext.from_settings(self.settings)

        for stmt in self.statements:
            self.context.update_from_statement(stmt)

            if isinstance(stmt, CoordStmt):
                self.context.normalize_coordinates(stmt)

            if isinstance(stmt, AMParamStmt):
                self.aperture_macros[stmt.name] = stmt

            elif isinstance(stmt, ADParamStmt):
                self.aperture_defs.append(stmt)

            else:
                # ignore FS, MO, AS, IN, IP, IR, MI, OF, SF, LN statements
                if isinstance(stmt, ParamStmt) and not isinstance(stmt, LPParamStmt):
                    continue

                if isinstance(stmt, (CommentStmt, EofStmt)):
                    continue

                self.main_statements.append(stmt)

        if self.context.angle != 0:
            self.rotate(self.context.angle) # TODO is this correct/useful?

        if self.context.is_negative:
            self.negate_polarity() # TODO is this correct/useful?

        self.context.notation = 'absolute'
        self.context.zeros = 'trailing'


    @classmethod
    def open(kls, filename, enable_includes=False, enable_include_dir=None):
        with open(filename, "r") as f:
            if enable_includes and enable_include_dir is None:
                enable_include_dir = Path(filename).parent
            return kls.from_string(f.read(), enable_include_dir)


    @classmethod
    def from_string(kls, data, enable_include_dir=None):
        return GerberParser().parse(data, enable_include_dir)

    @property
    def comments(self):
        return [stmt.comment for stmt in self.statements if isinstance(stmt, CommentStmt)]

    @property
    def size(self):
        (x0, y0), (x1, y1) = self.bounding_box
        return (x1 - x0, y1 - y0)

    @property
    def bounding_box(self):
        bounds = [ p.bounding_box for p in self.pDeprecatedrimitives ]

        min_x = min(x0 for (x0, y0), (x1, y1) in bounds)
        min_y = min(y0 for (x0, y0), (x1, y1) in bounds)
        max_x = max(x1 for (x0, y0), (x1, y1) in bounds)
        max_y = max(y1 for (x0, y0), (x1, y1) in bounds)

        return ((min_x, max_x), (min_y, max_y))

    # TODO: re-add settings arg
    def write(self, filename):
        self.settings.notation = 'absolute'
        self.settings.zeros = 'trailing'
        self.settings.format = self.format
        self.units = self.units

        with open(filename, 'w') as f:
            print(UnitStmt().to_gerber(self.settings), file=f)
            print(FormatSpecStmt().to_gerber(self.settings), file=f)
            print(ImagePolarityStmt().to_gerber(self.settings), file=f)

            for thing in chain(self.aperture_macros.values(), self.aperture_defs, self.main_statements):
                print(thing.to_gerber(self.settings), file=f)

            print('M02*', file=f)

    def to_inch(self):
        if self.units == 'metric':
            for thing in chain(self.aperture_macros.values(), self.aperture_defs, self.statements, self.primitives):
                thing.to_inch()
            self.units = 'inch'
            self.context.units = 'inch'

    def to_metric(self):
        if self.units == 'inch':
            for thing in chain(self.aperture_macros.values(), self.aperture_defs, self.statements, self.primitives):
                thing.to_metric()
            self.units='metric'
            self.context.units='metric'

    def offset(self, x_offset=0,  y_offset=0):
        for thing in chain(self.main_statements, self.primitives):
            thing.offset(x_offset, y_offset)

    def rotate(self, angle, center=(0,0)):
        if angle % 360 == 0:
            return

        self._generalize_apertures()

        last_x = 0
        last_y = 0
        last_rx = 0
        last_ry = 0

        for macro in self.aperture_macros.values():
            macro.rotate(angle, center)

        for statement in self.main_statements:
            if isinstance(statement, CoordStmt) and statement.x != None and statement.y != None:

                if statement.i is not None and statement.j is not None:
                    cx, cy = last_x + statement.i, last_y + statement.j
                    cx, cy = rotate_point((cx, cy), angle, center)
                    statement.i, statement.j = cx - last_rx, cy - last_ry

                last_x, last_y = statement.x, statement.y
                last_rx, last_ry = rotate_point((statement.x, statement.y), angle, center)
                statement.x, statement.y = last_rx, last_ry
    
    def negate_polarity(self):
        for statement in self.main_statements:
            if isinstance(statement, LPParamStmt):
                statement.lp = 'dark' if statement.lp == 'clear' else 'clear'
    
    def _generalize_apertures(self):
        # For rotation, replace standard apertures with macro apertures.
        if not any(isinstance(stm, ADParamStmt) and stm.shape in 'ROP' for stm in self.aperture_defs):
            return

        # find an unused macro name with the given prefix
        def free_name(prefix):
            return next(f'{prefix}_{i}' for i in count() if f'{prefix}_{i}' not in self.aperture_macros)
        
        rect = free_name('MACR')
        self.aperture_macros[rect] = AMParamStmt.rectangle(rect, self.units)

        obround_landscape = free_name('MACLO')
        self.aperture_macros[obround_landscape] = AMParamStmt.landscape_obround(obround_landscape, self.units)

        obround_portrait = free_name('MACPO')
        self.aperture_macros[obround_portrait] = AMParamStmt.portrait_obround(obround_portrait, self.units)

        polygon = free_name('MACP')
        self.aperture_macros[polygon] = AMParamStmt.polygon(polygon, self.units)

        for statement in self.aperture_defs:
            if isinstance(statement, ADParamStmt):
                if statement.shape == 'R':
                    statement.shape = rect

                elif statement.shape == 'O':
                    x, y, *_ = *statement.modifiers[0], 0, 0
                    statement.shape = obround_landscape if x > y else obround_portrait

                elif statement.shape == 'P':
                    statement.shape = polygon


class GerberParser:
    NUMBER = r"[\+-]?\d+"
    DECIMAL = r"[\+-]?\d+([.]?\d+)?"
    NAME = r"[a-zA-Z_$\.][a-zA-Z_$\.0-9+\-]+"

    STATEMENT_REGEXES = {
        'unit_mode': r"MO(?P<unit>(MM|IN))",
        'interpolation_mode': r"(?P<code>G0?[123]|G74|G75)?",
        'coord': = fr"(X(?P<x>{NUMBER}))?(Y(?P<y>{NUMBER}))?" \
            fr"(I(?P<i>{NUMBER}))?(J(?P<j>{NUMBER}))?" \
            fr"(?P<operation>D0?[123])?\*",
        'aperture': r"(G54|G55)?D(?P<number>\d+)\*",
        'comment': r"G0?4(?P<comment>[^*]*)(\*)?",
        'format_spec': r"FS(?P<zero>(L|T|D))?(?P<notation>(A|I))[NG0-9]*X(?P<x>[0-7][0-7])Y(?P<y>[0-7][0-7])[DM0-9]*",
        'load_polarity': r"LP(?P<polarity>(D|C))",
        'load_name': r"LN(?P<name>.*)",
        'offset': fr"OF(A(?P<a>{DECIMAL}))?(B(?P<b>{DECIMAL}))?",
        'include_file': r"IF(?P<filename>.*)",
        'image_name': r"IN(?P<name>.*)",
        'axis_selection': r"AS(?P<axes>AXBY|AYBX)",
        'image_polarity': r"IP(?P<polarity>(POS|NEG))",
        'image_rotation': fr"IR(?P<rotation>{NUMBER})",
        'mirror_image': r"MI(A(?P<a>0|1))?(B(?P<b>0|1))?",
        'scale_factor': fr"SF(A(?P<a>{DECIMAL}))?(B(?P<b>{DECIMAL}))?",
        'aperture_definition': fr"ADD(?P<number>\d+)(?P<shape>C|R|O|P|{NAME})[,]?(?P<modifiers>[^,%]*)",
        'aperture_macro': fr"AM(?P<name>{NAME})\*(?P<macro>[^%]*)",
        'region_mode': r'(?P<mode>G3[67])\*',
        'quadrant_mode': r'(?P<mode>G7[45])\*',
        'old_unit':r'(?P<mode>G7[01])\*',
        'old_notation': r'(?P<mode>G9[01])\*',
        'eof': r"M0?[02]\*",
        'ignored': r"(?P<stmt>M01)\*",
        }

    STATEMENT_REGEXES = { key: re.compile(value) for key, value in STATEMENT_REGEXES.items() }


    def __init__(self, include_dir=None):
        """ Pass an include dir to enable IF include statements (potentially DANGEROUS!). """
        self.include_dir = include_dir
        self.include_stack = []
        self.settings = FileSettings()
        self.statements = []
        self.primitives = []
        self.apertures = {}
        self.macros = {}
        self.current_region = None
        self.x = 0
        self.y = 0
        self.last_operation = None
        self.op = "D02"
        self.aperture = 0
        self.interpolation = 'linear'
        self.direction = 'clockwise'
        self.image_polarity = 'positive'
        self.level_polarity = 'dark'
        self.region_mode = 'off'
        self.quadrant_mode = 'multi-quadrant'
        self.step_and_repeat = (1, 1, 0, 0)

    def parse(self, data):
        for stmt in self._parse(data):
            self.evaluate(stmt)
            self.statements.append(stmt)

        # Initialize statement units
        for stmt in self.statements:
            stmt.units = self.settings.units

        return GerberFile(self.statements, self.settings, self.primitives, self.apertures.values())

    @classmethod
    def _split_commands(kls, data):
        """
        Split the data into commands. Commands end with * (and also newline to help with some badly formatted files)
        """

        start = 0
        extended_command = False

        for pos, c in enumerate(data):
            if c == '%':
                if extended_command:
                    yield data[start:pos+1]
                    extended_command = False
                    start = pos + 1

                else:
                    extended_command = True

                continue

            elif extended_command:
                continue

            if c == '\r' or c == '\n' or c == '*':
                word_command = data[start:pos+1].strip()
                if word_command and word_command != '*':
                    yield word_command
                start = cur + 1

    def dump_json(self):
        return json.dumps({"statements": [stmt.__dict__ for stmt in self.statements]})

    def dump_str(self):
        return '\n'.join(str(stmt) for stmt in self.statements) + '\n'

    def _parse(self, data):
        for line in self._split_commands(data):
            # We cannot assume input gerber to use well-formed statement delimiters. Thus, we may need to parse
            # multiple statements from one line.
            while line:
                for name, le_regex in self.STATEMENT_REGEXES.items():
                    if (match := le_regex.match(line))
                        yield from getattr(self, f'_parse_{name}')(self, match.groupdict())
                        line = line[match.end(0):]
                        break

                else:
                    if line[-1] == '*':
                        yield UnknownStmt(line)
                        line = ''

    def _parse_interpolation_mode(self, match):
        if match['code'] == 'G01':
            yield LinearModeStmt()
        elif match['code'] == 'G02':
            yield CircularCWModeStmt()
        elif match['code'] == 'G03':
            yield CircularCCWModeStmt()
        elif match['code'] == 'G74':
            yield MultiQuadrantModeStmt()
        elif match['code'] == 'G75':
            yield SingleQuadrantModeStmt()

    def _parse_coord(self, match):
        x = parse_gerber_value(match.get('x'), self.settings)
        y = parse_gerber_value(match.get('y'), self.settings)
        i = parse_gerber_value(match.get('i'), self.settings)
        j = parse_gerber_value(match.get('j'), self.settings)
        if not (op := match['operation']):
            if self.last_operation == 'D01':
                warnings.warn('Coordinate statement without explicit operation code. This is forbidden by spec.',
                        SyntaxWarning)
                op = 'D01'
            else:
                raise SyntaxError('Ambiguous coordinate statement. Coordinate statement does not have an operation '\
                                  'mode and the last operation statement was not D01.')

        if op in ('D1', 'D01'):
            yield InterpolateStmt(x, y, i, j)

        if i is not None or j is not None:
            raise SyntaxError("i/j coordinates given for D02/D03 operation (which doesn't take i/j)")
            
        if op in ('D2', 'D02'):
            yield MoveStmt(x, y, i, j)
        else: # D03
            yield FlashStmt(x, y, i, j)


    def _parse_aperture(self, match):
        number = int(match['number'])
        if number < 10:
            raise SyntaxError(f'Invalid aperture number {number}: Aperture number must be >= 10.')
        yield ApertureStmt(number)
    
    def _parse_format_spec(self, match):
        # This is a common problem in Eagle files, so just suppress it
        self.settings.zero_suppression = {'L': 'leading', 'T': 'trailing'}.get(match['zero'], 'leading')
        self.settings.notation = 'absolute' if match.['notation'] == 'A' else 'incremental'

        if match['x'] != match['y']:
            raise SyntaxError(f'FS specifies different coordinate formats for X and Y ({match["x"]} != {match["y"]})')
        self.settings.number_format = int(match['x'][0]), int(match['x'][1])

        yield FormatSpecStmt()

    def _parse_unit_mode(self, match):
        if match['unit'] == 'MM':
            self.settings.units = 'mm'
        else:
            self.settings.units = 'inch'

        yield MOParamStmt()

    def _parse_load_polarity(self, match):
        yield LoadPolarityStmt(dark=(match['polarity'] == 'D'))

    def _parse_offset(self, match):
        a, b = match['a'], match['b']
        a = float(a) if a else 0
        b = float(b) if b else 0
        yield OffsetStmt(a, b)

    def _parse_include_file(self, match):
        if self.include_dir is None:
            warnings.warn('IF Include File statement found, but includes are deactivated.', ResourceWarning)
        else:
            warnings.warn('IF Include File statement found. Includes are activated, but is this really a good idea?', ResourceWarning)

        include_file = self.include_dir / param["filename"]
        if include_file in self.include_stack
            raise ValueError("Recusive file inclusion via IF include statement.")
        self.include_stack.append(include_file)

        # Spec 2020-09 section 3.1: Gerber files must use UTF-8
        yield from self._parse(f.read_text(encoding='UTF-8'))
        self.include_stack.pop()


    def _parse_image_name(self, match):
        warnings.warn('Deprecated IN (image name) statement found. This deprecated since rev. I4 (Oct 2013).',
                DeprecationWarning)
        yield CommentStmt(f'Image name: {match["name"]}')

    def _parse_load_name(self, match):
        warnings.warn('Deprecated LN (load name) statement found. This deprecated since rev. I4 (Oct 2013).',
                DeprecationWarning)
        yield CommentStmt(f'Name of subsequent part: {match["name"]}')

    def _parse_axis_selection(self, match):
        warnings.warn('Deprecated AS (axis selection) statement found. This deprecated since rev. I1 (Dec 2012).',
                DeprecationWarning)
        self.settings.output_axes = match['axes']
        yield AxisSelectionStmt()

    def _parse_image_polarity(self, match):
        warnings.warn('Deprecated IP (image polarity) statement found. This deprecated since rev. I4 (Oct 2013).',
                DeprecationWarning)
        self.settings.image_polarity = match['polarity']
        yield ImagePolarityStmt()
    
    def _parse_image_rotation(self, match):
        warnings.warn('Deprecated IR (image rotation) statement found. This deprecated since rev. I1 (Dec 2012).',
                DeprecationWarning)
        self.settings.image_rotation = int(match['rotation'])
        yield ImageRotationStmt()

    def _parse_mirror_image(self, match):
        warnings.warn('Deprecated MI (mirror image) statement found. This deprecated since rev. I1 (Dec 2012).',
                DeprecationWarning)
        self.settings.mirror = bool(int(match['a'] or '0')), bool(int(match['b'] or '1'))
        yield MirrorImageStmt()

    def _parse_scale_factor(self, match):
        warnings.warn('Deprecated SF (scale factor) statement found. This deprecated since rev. I1 (Dec 2012).',
                DeprecationWarning)
        a = float(match['a']) if match['a'] else 1.0
        b = float(match['b']) if match['b'] else 1.0
        self.settings.scale_factor = a, b
        yield ScaleFactorStmt()

    def _parse_comment(self, match):
        yield CommentStmt(match["comment"])

    def _parse_region_mode(self, match):
        yield RegionStartStatement() if match['mode'] == 'G36' else RegionEndStatement()

        elif param["param"] == "AM":
            yield AMParamStmt.from_dict(param, units=self.settings.units)
        elif param["param"] == "AD":
            yield ADParamStmt.from_dict(param)

    def _parse_quadrant_mode(self, match):
        if match['mode'] == 'G74':
            warnings.warn('Deprecated G74 single quadrant mode statement found. This deprecated since 2021.',
                    DeprecationWarning)
            yield SingleQuadrantModeStmt()
        else:
            yield MultiQuadrantModeStmt()

    def _parse_old_unit(self, match):
        self.settings.units = 'inch' if match['mode'] == 'G70' else 'mm'
        warnings.warn(f'Deprecated {match["mode"]} unit mode statement found. This deprecated since 2012.',
                    DeprecationWarning)
        yield CommentStmt(f'Replaced deprecated {match["mode"]} unit mode statement with MO statement')
        yield UnitStmt()

    def _parse_old_unit(self, match):
        # FIXME make sure we always have FS at end of processing.
        self.settings.notation = 'absolute' if match['mode'] == 'G90' else 'incremental'
        warnings.warn(f'Deprecated {match["mode"]} notation mode statement found. This deprecated since 2012.',
                    DeprecationWarning)
        yield CommentStmt(f'Replaced deprecated {match["mode"]} notation mode statement with FS statement')
    
    def _parse_eof(self, match):
        yield EofStmt()

    def _parse_ignored(self, match):
        yield CommentStmt(f'Ignoring {match{"stmt"]} statement.')

    def evaluate(self, stmt):
        """ Evaluate Gerber statement and update image accordingly.

        This method is called once for each statement in the file as it
        is parsed.

        Parameters
        ----------
        statement : Statement
            Gerber/Excellon statement to evaluate.

        """
        if isinstance(stmt, CoordStmt):
            self._evaluate_coord(stmt)

        elif isinstance(stmt, ParamStmt):
            self._evaluate_param(stmt)

        elif isinstance(stmt, ApertureStmt):
            self._evaluate_aperture(stmt)

        elif isinstance(stmt, (RegionModeStmt, QuadrantModeStmt)):
            self._evaluate_mode(stmt)

        elif isinstance(stmt, (CommentStmt, UnknownStmt, DeprecatedStmt, EofStmt)):
            return

        else:
            raise Exception("Invalid statement to evaluate")

    def _define_aperture(self, d, shape, modifiers):
        aperture = None
        if shape == 'C':
            diameter = modifiers[0][0]

            hole_diameter = 0
            rectangular_hole = (0, 0)
            if len(modifiers[0]) == 2:
                hole_diameter = modifiers[0][1]
            elif len(modifiers[0]) == 3:
                rectangular_hole = modifiers[0][1:3]

            aperture = Circle(position=None, diameter=diameter,
                              hole_diameter=hole_diameter,
                              hole_width=rectangular_hole[0],
                              hole_height=rectangular_hole[1],
                              units=self.settings.units)

        elif shape == 'R':
            width = modifiers[0][0]
            height = modifiers[0][1]

            hole_diameter = 0
            rectangular_hole = (0, 0)
            if len(modifiers[0]) == 3:
                hole_diameter = modifiers[0][2]
            elif len(modifiers[0]) == 4:
                rectangular_hole = modifiers[0][2:4]

            aperture = Rectangle(position=None, width=width, height=height,
                                 hole_diameter=hole_diameter,
                                 hole_width=rectangular_hole[0],
                                 hole_height=rectangular_hole[1],
                                 units=self.settings.units)
        elif shape == 'O':
            width = modifiers[0][0]
            height = modifiers[0][1]

            hole_diameter = 0
            rectangular_hole = (0, 0)
            if len(modifiers[0]) == 3:
                hole_diameter = modifiers[0][2]
            elif len(modifiers[0]) == 4:
                rectangular_hole = modifiers[0][2:4]

            aperture = Obround(position=None, width=width, height=height,
                               hole_diameter=hole_diameter,
                               hole_width=rectangular_hole[0],
                               hole_height=rectangular_hole[1],
                               units=self.settings.units)
        elif shape == 'P':
            outer_diameter = modifiers[0][0]
            number_vertices = int(modifiers[0][1])
            if len(modifiers[0]) > 2:
                rotation = modifiers[0][2]
            else:
                rotation = 0

            hole_diameter = 0
            rectangular_hole = (0, 0)
            if len(modifiers[0]) == 4:
                hole_diameter = modifiers[0][3]
            elif len(modifiers[0]) >= 5:
                rectangular_hole = modifiers[0][3:5]

            aperture = Polygon(position=None, sides=number_vertices,
                               radius=outer_diameter/2.0,
                               hole_diameter=hole_diameter,
                               hole_width=rectangular_hole[0],
                               hole_height=rectangular_hole[1],
                               rotation=rotation)
        else:
            aperture = self.macros[shape].build(modifiers)

        aperture.units = self.settings.units
        self.apertures[d] = aperture

    def _evaluate_mode(self, stmt):
        if stmt.type == 'RegionMode':
            if self.region_mode == 'on' and stmt.mode == 'off':
                # Sometimes we have regions that have no points. Skip those
                if self.current_region:
                    self.primitives.append(Region(self.current_region,
                                                  level_polarity=self.level_polarity, units=self.settings.units))

                self.current_region = None
            self.region_mode = stmt.mode
        elif stmt.type == 'QuadrantMode':
            self.quadrant_mode = stmt.mode

    def _evaluate_param(self, stmt):
        if stmt.param == "FS":
            self.settings.zero_suppression = stmt.zero_suppression
            self.settings.format = stmt.format
            self.settings.notation = stmt.notation
        elif stmt.param == "MO":
            self.settings.units = stmt.mode
        elif stmt.param == "IP":
            self.image_polarity = stmt.ip
        elif stmt.param == "LP":
            self.level_polarity = stmt.lp
        elif stmt.param == "AM":
            self.macros[stmt.name] = stmt
        elif stmt.param == "AD":
            self._define_aperture(stmt.d, stmt.shape, stmt.modifiers)

    def _evaluate_coord(self, stmt):
        x = self.x if stmt.x is None else stmt.x
        y = self.y if stmt.y is None else stmt.y

        if stmt.function in ("G01", "G1"):
            self.interpolation = 'linear'
        elif stmt.function in ('G02', 'G2', 'G03', 'G3'):
            self.interpolation = 'arc'
            self.direction = ('clockwise' if stmt.function in
                              ('G02', 'G2') else 'counterclockwise')

        if stmt.only_function:
            # Sometimes we get a coordinate statement
            # that only sets the function. If so, don't
            # try futher otherwise that might draw/flash something
            return

        if stmt.op:
            self.op = stmt.op
        else:
            # no implicit op allowed, force here if coord block doesn't have it
            stmt.op = self.op

        if self.op == "D01" or self.op == "D1":
            start = (self.x, self.y)
            end = (x, y)

            if self.interpolation == 'linear':
                if self.region_mode == 'off':
                    self.primitives.append(Line(start, end,
                                                self.apertures[self.aperture],
                                                level_polarity=self.level_polarity,
                                                units=self.settings.units))
                else:
                    # from gerber spec revision J3, Section 4.5, page 55:
                    #  The segments are not graphics objects in themselves; segments are part of region which is the graphics object. The segments have no thickness.
                    # The current aperture is associated with the region.
                    # This has no graphical effect, but allows all its attributes to
                    # be applied to the region.

                    if self.current_region is None:
                        self.current_region = [Line(start, end,
                                                    self.apertures.get(self.aperture,
                                                                       Circle((0, 0), 0)),
                                                    level_polarity=self.level_polarity,
                                                    units=self.settings.units), ]
                    else:
                        self.current_region.append(Line(start, end,
                                                        self.apertures.get(self.aperture,
                                                                           Circle((0, 0), 0)),
                                                        level_polarity=self.level_polarity,
                                                        units=self.settings.units))
            else:
                i = 0 if stmt.i is None else stmt.i
                j = 0 if stmt.j is None else stmt.j
                center = self._find_center(start, end, (i, j))
                if self.region_mode == 'off':
                    self.primitives.append(Arc(start, end, center, self.direction,
                                               self.apertures[self.aperture],
                                               quadrant_mode=self.quadrant_mode,
                                               level_polarity=self.level_polarity,
                                               units=self.settings.units))
                else:
                    if self.current_region is None:
                        self.current_region = [Arc(start, end, center, self.direction,
                                                   self.apertures.get(self.aperture, Circle((0,0), 0)),
                                                   quadrant_mode=self.quadrant_mode,
                                                   level_polarity=self.level_polarity,
                                                   units=self.settings.units),]
                    else:
                        self.current_region.append(Arc(start, end, center, self.direction,
                                                       self.apertures.get(self.aperture, Circle((0,0), 0)),
                                                       quadrant_mode=self.quadrant_mode,
                                                       level_polarity=self.level_polarity,
                                                       units=self.settings.units))
                    # Gerbv seems to reset interpolation mode in regions..
                    # TODO: Make sure this is right.
                    self.interpolation = 'linear'

        elif self.op == "D02" or self.op == "D2":

            if self.region_mode == "on":
                # D02 in the middle of a region finishes that region and starts a new one
                if self.current_region and len(self.current_region) > 1:
                    self.primitives.append(Region(self.current_region,
                                                  level_polarity=self.level_polarity,
                                                  units=self.settings.units))
                self.current_region = None

        elif self.op == "D03" or self.op == "D3":
            primitive = copy.deepcopy(self.apertures[self.aperture])

            if primitive is not None:

                if not isinstance(primitive, AMParamStmt):
                    primitive.position = (x, y)
                    primitive.level_polarity = self.level_polarity
                    primitive.units = self.settings.units
                    self.primitives.append(primitive)
                else:
                    # Aperture Macro
                    for am_prim in primitive.primitives:
                        renderable = am_prim.to_primitive((x, y),
                                                          self.level_polarity,
                                                          self.settings.units)
                        if renderable is not None:
                            self.primitives.append(renderable)
        self.x, self.y = x, y

    def _find_center(self, start, end, offsets):
        """
        In single quadrant mode, the offsets are always positive, which means
        there are 4 possible centers. The correct center is the only one that
        results in an arc with sweep angle of less than or equal to 90 degrees
        in the specified direction
        """
        two_pi = 2 * math.pi
        if self.quadrant_mode == 'single-quadrant':
            # The Gerber spec says single quadrant only has one possible center,
            # and you can detect it based on the angle. But for real files, this
            # seems to work better - there is usually only one option that makes
            # sense for the center (since the distance should be the same
            # from start and end). We select the center with the least error in
            # radius from all the options with a valid sweep angle.

            sqdist_diff_min = sys.maxsize
            center = None
            for factors in [(1, 1), (1, -1), (-1, 1), (-1, -1)]:

                test_center = (start[0] + offsets[0] * factors[0],
                               start[1] + offsets[1] * factors[1])

                # Find angle from center to start and end points
                start_angle = math.atan2(*reversed([_start - _center for _start, _center in zip(start, test_center)]))
                end_angle = math.atan2(*reversed([_end - _center for _end, _center in zip(end, test_center)]))

                # Clamp angles to 0, 2pi
                theta0 = (start_angle + two_pi) % two_pi
                theta1 = (end_angle + two_pi) % two_pi

                # Determine sweep angle in the current arc direction
                if self.direction == 'counterclockwise':
                    sweep_angle = abs(theta1 - theta0)
                else:
                    theta0 += two_pi
                    sweep_angle = abs(theta0 - theta1) % two_pi

                # Calculate the radius error
                sqdist_start = sq_distance(start, test_center)
                sqdist_end = sq_distance(end, test_center)
                sqdist_diff = abs(sqdist_start - sqdist_end)

                # Take the option with the lowest radius error from the set of
                # options with a valid sweep angle
                # In some rare cases, the sweep angle is numerically (10**-14) above pi/2
                # So it is safer to compare the angles with some tolerance
                is_lowest_radius_error = sqdist_diff < sqdist_diff_min
                is_valid_sweep_angle = sweep_angle >= 0 and sweep_angle <= math.pi / 2.0 + 1e-6
                if is_lowest_radius_error and is_valid_sweep_angle:
                    center = test_center
                    sqdist_diff_min = sqdist_diff
            return center
        else:
            return (start[0] + offsets[0], start[1] + offsets[1])

    def _evaluate_aperture(self, stmt):
        self.aperture = stmt.d

def _match_one(expr, data):
    match = expr.match(data)
    if match is None:
        return ({}, None)
    else:
        return (match.groupdict(), data[match.end(0):])


def _match_one_from_many(exprs, data):
    for expr in exprs:
        match = expr.match(data)
        if match:
            return (match.groupdict(), data[match.end(0):])

    return ({}, None)

class GerberContext(FileSettings):
    TYPE_NONE = 'none'
    TYPE_AM = 'am'
    TYPE_AD = 'ad'
    TYPE_MAIN = 'main'
    IP_LINEAR = 'linear'
    IP_ARC = 'arc'
    DIR_CLOCKWISE = 'cw'
    DIR_COUNTERCLOCKWISE = 'ccw'

    @classmethod
    def from_settings(cls, settings):
        return cls(settings.notation, settings.units, settings.zero_suppression,
                   settings.format, settings.zeros, settings.angle_units)

    def __init__(self, notation='absolute', units='inch',
                 zero_suppression=None, format=(2, 5), zeros=None,
                 angle_units='degrees',
                 mirror=(False, False), offset=(0., 0.), scale=(1., 1.),
                 angle=0., axis='xy'):
        super(GerberContext, self).__init__(notation, units, zero_suppression, 
                                      format, zeros, angle_units)
        self.mirror = mirror
        self.offset = offset
        self.scale = scale
        self.angle = angle
        self.axis = axis

        self.is_negative = False
        self.no_polarity = True
        self.in_single_quadrant_mode = False
        self.op = None
        self.interpolation = self.IP_LINEAR
        self.direction = self.DIR_CLOCKWISE
        self.x, self.y = 0, 0

    def update_from_statement(self, stmt):
        if isinstance(stmt, MIParamStmt):
            self.mirror = (stmt.a, stmt.b)

        elif isinstance(stmt, OFParamStmt):
            self.offset = (stmt.a, stmt.b)

        elif isinstance(stmt, SFParamStmt):
            self.scale = (stmt.a, stmt.b)

        elif isinstance(stmt, ASParamStmt):
            self.axis = 'yx' if stmt.mode == 'AYBX' else 'xy'

        elif isinstance(stmt, IRParamStmt):
            self.angle = stmt.angle

        elif isinstance(stmt, QuadrantModeStmt):
            self.in_single_quadrant_mode = stmt.mode == 'single-quadrant'
            stmt.mode = 'multi-quadrant'

        elif isinstance(stmt, IPParamStmt):
            self.is_negative = stmt.ip == 'negative'

        elif isinstance(stmt, LPParamStmt):
            self.no_polarity = False

    @property
    def matrix(self):
        if self.axis == 'xy':
            mx = -1 if self.mirror[0] else 1
            my = -1 if self.mirror[1] else 1
            return (
                self.scale[0] * mx, self.offset[0],
                self.scale[1] * my, self.offset[1],
                self.scale[0] * mx, self.scale[1] * my)
        else:
            mx = -1 if self.mirror[1] else 1
            my = -1 if self.mirror[0] else 1
            return (
                self.scale[1] * mx, self.offset[1],
                self.scale[0] * my, self.offset[0],
                self.scale[1] * mx, self.scale[0] * my)

    def normalize_coordinates(self, stmt):
        if stmt.function == 'G01' or stmt.function == 'G1':
            self.interpolation = self.IP_LINEAR

        elif stmt.function == 'G02' or stmt.function == 'G2':
            self.interpolation = self.IP_ARC
            self.direction = self.DIR_CLOCKWISE
            if self.mirror[0] != self.mirror[1]:
                stmt.function = 'G03'

        elif stmt.function == 'G03' or stmt.function == 'G3':
            self.interpolation = self.IP_ARC
            self.direction = self.DIR_COUNTERCLOCKWISE
            if self.mirror[0] != self.mirror[1]:
                stmt.function = 'G02'

        if stmt.only_function:
            return

        last_x, last_y = self.x, self.y
        if self.notation == 'absolute':
            x = stmt.x if stmt.x is not None else self.x
            y = stmt.y if stmt.y is not None else self.y

        else:
            x = self.x + stmt.x if stmt.x is not None else 0
            y = self.y + stmt.y if stmt.y is not None else 0

        self.x, self.y = x, y
        self.op = stmt.op if stmt.op is not None else self.op

        stmt.op = self.op
        stmt.x = self.matrix[0] * x + self.matrix[1]
        stmt.y = self.matrix[2] * y + self.matrix[3]

        if stmt.op == 'D01' and self.interpolation == self.IP_ARC:
            qx, qy = 1, 1
            if self.in_single_quadrant_mode:
                if self.direction == self.DIR_CLOCKWISE:
                    qx = 1 if y > last_y else -1
                    qy = 1 if x < last_x else -1
                else:
                    qx = 1 if y < last_y else -1
                    qy = 1 if x > last_x else -1
                if last_x == x and last_y == y:
                    qx, qy = 0, 0

            stmt.i = qx * self.matrix[4] * stmt.i if stmt.i is not None else 0
            stmt.j = qy * self.matrix[5] * stmt.j if stmt.j is not None else 0