summaryrefslogtreecommitdiff
path: root/gerbonara/gerber/render/cairo_backend.py
blob: 6af33489949a0f344791dc45e9f0fa182605371f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and
# limitations under the License.

try:
    import cairo
except ImportError:
    import cairocffi as cairo

from operator import mul
import tempfile
import os

from .render import GerberContext, RenderSettings
from .theme import THEMES
from ..primitives import *
from ..utils import rotate_point

from io import BytesIO


class GerberCairoContext(GerberContext):

    def __init__(self, scale=300):
        super(GerberCairoContext, self).__init__()
        self.scale = (scale, scale)
        self.surface = None
        self.surface_buffer = None
        self.ctx = None
        self.active_layer = None
        self.active_matrix = None
        self.output_ctx = None
        self.has_bg = False
        self.origin_in_inch = None
        self.size_in_inch = None
        self._xform_matrix = None
        self._render_count = 0

    @property
    def origin_in_pixels(self):
        return (self.scale_point(self.origin_in_inch)
                if self.origin_in_inch is not None else (0.0, 0.0))

    @property
    def size_in_pixels(self):
        return (self.scale_point(self.size_in_inch)
                if self.size_in_inch is not None else (0.0, 0.0))

    def set_bounds(self, bounds, new_surface=False):
        origin_in_inch = (bounds[0][0], bounds[1][0])
        size_in_inch = (abs(bounds[0][1] - bounds[0][0]),
                        abs(bounds[1][1] - bounds[1][0]))
        size_in_pixels = self.scale_point(size_in_inch)
        self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch
        self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch
        self._xform_matrix = cairo.Matrix(xx=1.0, yy=-1.0,
                                          x0=-self.origin_in_pixels[0],
                                          y0=self.size_in_pixels[1])
        if (self.surface is None) or new_surface:
            self.surface_buffer = tempfile.NamedTemporaryFile()
            self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
            self.output_ctx = cairo.Context(self.surface)

    def render_layer(self, layer, filename=None, settings=None, bgsettings=None,
                     verbose=False, bounds=None):
        if settings is None:
            settings = THEMES['default'].get(layer.layer_class, RenderSettings())
        if bgsettings is None:
            bgsettings = THEMES['default'].get('background', RenderSettings())

        if self._render_count == 0:
            if verbose:
                print('[Render]: Rendering Background.')
            self.clear()
            if bounds is not None:
                self.set_bounds(bounds)
            else:
                self.set_bounds(layer.bounds)
            self.paint_background(bgsettings)
        if verbose:
            print('[Render]: Rendering {} Layer.'.format(layer.layer_class))
        self._render_count += 1
        self._render_layer(layer, settings)
        if filename is not None:
            self.dump(filename, verbose)

    def render_layers(self, layers, filename, theme=THEMES['default'],
                      verbose=False, max_width=800, max_height=600):
        """ Render a set of layers
        """
        # Calculate scale parameter
        x_range = [10000, -10000]
        y_range = [10000, -10000]
        for layer in layers:
            bounds = layer.bounds
            if bounds is not None:
                layer_x, layer_y = bounds
                x_range[0] = min(x_range[0], layer_x[0])
                x_range[1] = max(x_range[1], layer_x[1])
                y_range[0] = min(y_range[0], layer_y[0])
                y_range[1] = max(y_range[1], layer_y[1])
        width = x_range[1] - x_range[0]
        height = y_range[1] - y_range[0]

        scale = math.floor(min(float(max_width)/width, float(max_height)/height))
        self.scale = (scale, scale)

        self.clear()

        # Render layers
        bgsettings = theme['background']
        for layer in layers:
            settings = theme.get(layer.layer_class, RenderSettings())
            self.render_layer(layer, settings=settings, bgsettings=bgsettings,
                              verbose=verbose)
        self.dump(filename, verbose)

    def dump(self, filename=None, verbose=False):
        """ Save image as `filename`
        """
        try:
            is_svg = os.path.splitext(filename.lower())[1] == '.svg'
        except:
            is_svg = False

        if verbose:
            print('[Render]: Writing image to {}'.format(filename))

        if is_svg:
            self.surface.finish()
            self.surface_buffer.flush()
            with open(filename, "wb") as f:
                self.surface_buffer.seek(0)
                f.write(self.surface_buffer.read())
                f.flush()
        else:
            return self.surface.write_to_png(filename)

    def dump_str(self):
        """ Return a byte-string containing the rendered image.
        """
        fobj = BytesIO()
        self.surface.write_to_png(fobj)
        return fobj.getvalue()

    def dump_svg_str(self):
        """ Return a string containg the rendered SVG.
        """
        self.surface.finish()
        self.surface_buffer.flush()
        return self.surface_buffer.read()

    def clear(self):
        self.surface = None
        self.output_ctx = None
        self.has_bg = False
        self.origin_in_inch = None
        self.size_in_inch = None
        self._xform_matrix = None
        self._render_count = 0
        self.surface_buffer = None

    def _new_mask(self):
        class Mask:
            def __enter__(msk):
                size_in_pixels = self.size_in_pixels
                msk.surface = cairo.SVGSurface(None, size_in_pixels[0],
                                               size_in_pixels[1])
                msk.ctx = cairo.Context(msk.surface)
                msk.ctx.translate(-self.origin_in_pixels[0], -self.origin_in_pixels[1])
                return msk


            def __exit__(msk, exc_type, exc_val, traceback):
                if hasattr(msk.surface, 'finish'):
                    msk.surface.finish()

        return Mask()

    def _render_layer(self, layer, settings):
        self.invert = settings.invert
        # Get a new clean layer to render on
        self.new_render_layer(mirror=settings.mirror)
        for prim in layer.primitives:
            self.render(prim)
        # Add layer to image
        self.flatten(settings.color, settings.alpha)

    def _render_line(self, line, color):
        start = self.scale_point(line.start)
        end = self.scale_point(line.end)
        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if (not self.invert)
                                 and line.level_polarity == 'dark'
                              else cairo.OPERATOR_CLEAR)

        with self._clip_primitive(line):
            with self._new_mask() as mask:
                if isinstance(line.aperture, Circle):
                    width = line.aperture.diameter
                    mask.ctx.set_line_width(width * self.scale[0])
                    mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
                    mask.ctx.move_to(*start)
                    mask.ctx.line_to(*end)
                    mask.ctx.stroke()

                elif hasattr(line, 'vertices') and line.vertices is not None:
                    points = [self.scale_point(x) for x in line.vertices]
                    mask.ctx.set_line_width(0)
                    mask.ctx.move_to(*points[-1])
                    for point in points:
                        mask.ctx.line_to(*point)
                    mask.ctx.fill()
                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_arc(self, arc, color):
        center = self.scale_point(arc.center)
        start = self.scale_point(arc.start)
        end = self.scale_point(arc.end)
        radius = self.scale[0] * arc.radius
        two_pi = 2 * math.pi
        angle1 = (arc.start_angle + two_pi) % two_pi
        angle2 = (arc.end_angle + two_pi) % two_pi
        if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant':
            # Make the angles slightly different otherwise Cario will draw nothing
            angle2 -= 0.000000001
        if isinstance(arc.aperture, Circle):
            width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
        else:
            width = max(arc.aperture.width, arc.aperture.height, 0.001)

        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if (not self.invert)
                                 and arc.level_polarity == 'dark'
                              else cairo.OPERATOR_CLEAR)
        with self._clip_primitive(arc):
            with self._new_mask() as mask:
                mask.ctx.set_line_width(width * self.scale[0])
                mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND if isinstance(arc.aperture, Circle) else cairo.LINE_CAP_SQUARE)
                mask.ctx.move_to(*start)  # You actually have to do this...
                if arc.direction == 'counterclockwise':
                    mask.ctx.arc(center[0], center[1], radius, angle1, angle2)
                else:
                    mask.ctx.arc_negative(center[0], center[1], radius,
                                          angle1, angle2)
                mask.ctx.move_to(*end)  # ...lame
                mask.ctx.stroke()

                #if isinstance(arc.aperture, Rectangle):
                #    print("Flash Rectangle Ends")
                #    print(arc.aperture.rotation * 180/math.pi)
                #    rect = arc.aperture
                #    width = self.scale[0] * rect.width
                #    height = self.scale[1] * rect.height
                #    for point, angle in zip((start, end), (angle1, angle2)):
                #        print("{} w {} h{}".format(point, rect.width, rect.height))
                #        mask.ctx.rectangle(point[0] - width/2.0,
                #                           point[1] - height/2.0, width, height)
                #        mask.ctx.fill()

                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_region(self, region, color):
        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if (not self.invert) and region.level_polarity == 'dark'
                              else cairo.OPERATOR_CLEAR)
        with self._clip_primitive(region):
            with self._new_mask() as mask:
                mask.ctx.set_line_width(0)
                mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
                mask.ctx.move_to(*self.scale_point(region.primitives[0].start))
                for prim in region.primitives:
                    if isinstance(prim, Line):
                        mask.ctx.line_to(*self.scale_point(prim.end))
                    else:
                        center = self.scale_point(prim.center)
                        radius = self.scale[0] * prim.radius
                        angle1 = prim.start_angle
                        angle2 = prim.end_angle
                        if prim.direction == 'counterclockwise':
                            mask.ctx.arc(center[0], center[1], radius,
                                         angle1, angle2)
                        else:
                            mask.ctx.arc_negative(center[0], center[1], radius,
                                                  angle1, angle2)
                mask.ctx.fill()
                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_circle(self, circle, color):
        center = self.scale_point(circle.position)
        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if (not self.invert)
                                 and circle.level_polarity == 'dark'
                              else cairo.OPERATOR_CLEAR)
        with self._clip_primitive(circle):
            with self._new_mask() as mask:
                mask.ctx.set_line_width(0)
                mask.ctx.arc(center[0], center[1], (circle.radius * self.scale[0]), 0, (2 * math.pi))
                mask.ctx.fill()

                if hasattr(circle, 'hole_diameter') and circle.hole_diameter is not None and circle.hole_diameter > 0:
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR)
                    mask.ctx.arc(center[0], center[1], circle.hole_radius * self.scale[0], 0, 2 * math.pi)
                    mask.ctx.fill()

                if (hasattr(circle, 'hole_width') and hasattr(circle, 'hole_height')
                        and circle.hole_width is not None and circle.hole_height is not None
                        and circle.hole_width > 0 and circle.hole_height > 0):
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR
                                          if circle.level_polarity == 'dark'
                                             and (not self.invert)
                                          else cairo.OPERATOR_OVER)
                    width, height = self.scale_point((circle.hole_width, circle.hole_height))
                    lower_left = rotate_point(
                        (center[0] - width / 2.0, center[1] - height / 2.0),
                                              circle.rotation, center)
                    lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0),
                                               circle.rotation, center)
                    upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0),
                                              circle.rotation, center)
                    upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0),
                                               circle.rotation, center)
                    points = (lower_left, lower_right, upper_right, upper_left)
                    mask.ctx.move_to(*points[-1])
                    for point in points:
                        mask.ctx.line_to(*point)
                    mask.ctx.fill()
                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_rectangle(self, rectangle, color):
        lower_left = self.scale_point(rectangle.lower_left)
        width, height = tuple([abs(coord) for coord in
                               self.scale_point((rectangle.width,
                                                 rectangle.height))])
        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if (not self.invert)
                                 and rectangle.level_polarity == 'dark'
                              else cairo.OPERATOR_CLEAR)
        with self._clip_primitive(rectangle):
            with self._new_mask() as mask:
                mask.ctx.set_line_width(0)
                mask.ctx.rectangle(lower_left[0], lower_left[1], width, height)
                mask.ctx.fill()

                center = self.scale_point(rectangle.position)
                if rectangle.hole_diameter > 0:
                    # Render the center clear
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR
                                          if rectangle.level_polarity == 'dark'
                                             and (not self.invert)
                                          else cairo.OPERATOR_OVER)

                    mask.ctx.arc(center[0], center[1], rectangle.hole_radius * self.scale[0], 0, 2 * math.pi)
                    mask.ctx.fill()

                if rectangle.hole_width > 0 and rectangle.hole_height > 0:
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR
                                          if rectangle.level_polarity == 'dark'
                                             and (not self.invert)
                                          else cairo.OPERATOR_OVER)
                    width, height = self.scale_point((rectangle.hole_width, rectangle.hole_height))
                    lower_left = rotate_point((center[0] - width/2.0, center[1] - height/2.0), rectangle.rotation, center)
                    lower_right = rotate_point((center[0] + width/2.0, center[1] - height/2.0), rectangle.rotation, center)
                    upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0), rectangle.rotation, center)
                    upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0), rectangle.rotation, center)
                    points = (lower_left, lower_right, upper_right, upper_left)
                    mask.ctx.move_to(*points[-1])
                    for point in points:
                        mask.ctx.line_to(*point)
                    mask.ctx.fill()
                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_obround(self, obround, color):
        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if (not self.invert)
                                 and obround.level_polarity == 'dark'
                              else cairo.OPERATOR_CLEAR)
        with self._clip_primitive(obround):
            with self._new_mask() as mask:
                mask.ctx.set_line_width(0)

                # Render circles
                for circle in (obround.subshapes['circle1'], obround.subshapes['circle2']):
                    center = self.scale_point(circle.position)
                    mask.ctx.arc(center[0], center[1], (circle.radius * self.scale[0]), 0, (2 * math.pi))
                    mask.ctx.fill()

                # Render Rectangle
                rectangle = obround.subshapes['rectangle']
                lower_left = self.scale_point(rectangle.lower_left)
                width, height = tuple([abs(coord) for coord in
                                       self.scale_point((rectangle.width,
                                                         rectangle.height))])
                mask.ctx.rectangle(lower_left[0], lower_left[1], width, height)
                mask.ctx.fill()

                center = self.scale_point(obround.position)
                if obround.hole_diameter > 0:
                    # Render the center clear
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR)
                    mask.ctx.arc(center[0], center[1], obround.hole_radius * self.scale[0], 0, 2 * math.pi)
                    mask.ctx.fill()

                if obround.hole_width > 0 and obround.hole_height > 0:
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR
                                          if rectangle.level_polarity == 'dark'
                                             and (not self.invert)
                                          else cairo.OPERATOR_OVER)
                    width, height =self.scale_point((obround.hole_width, obround.hole_height))
                    lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0),
                                              obround.rotation, center)
                    lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0),
                                               obround.rotation, center)
                    upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0),
                                              obround.rotation, center)
                    upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0),
                                               obround.rotation, center)
                    points = (lower_left, lower_right, upper_right, upper_left)
                    mask.ctx.move_to(*points[-1])
                    for point in points:
                        mask.ctx.line_to(*point)
                    mask.ctx.fill()

                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_polygon(self, polygon, color):
        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if (not self.invert)
                                 and polygon.level_polarity == 'dark'
                              else cairo.OPERATOR_CLEAR)
        with self._clip_primitive(polygon):
            with self._new_mask() as mask:

                vertices = polygon.vertices
                mask.ctx.set_line_width(0)
                mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
                # Start from before the end so it is easy to iterate and make sure
                # it is closed
                mask.ctx.move_to(*self.scale_point(vertices[-1]))
                for v in vertices:
                    mask.ctx.line_to(*self.scale_point(v))
                mask.ctx.fill()

                center = self.scale_point(polygon.position)
                if polygon.hole_radius > 0:
                    # Render the center clear
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR
                                          if polygon.level_polarity == 'dark'
                                             and (not self.invert)
                                          else cairo.OPERATOR_OVER)
                    mask.ctx.set_line_width(0)
                    mask.ctx.arc(center[0],
                                 center[1],
                                 polygon.hole_radius * self.scale[0], 0, 2 * math.pi)
                    mask.ctx.fill()

                if polygon.hole_width > 0 and polygon.hole_height > 0:
                    mask.ctx.set_operator(cairo.OPERATOR_CLEAR
                                          if polygon.level_polarity == 'dark'
                                             and (not self.invert)
                                          else cairo.OPERATOR_OVER)
                    width, height = self.scale_point((polygon.hole_width, polygon.hole_height))
                    lower_left = rotate_point((center[0] - width / 2.0, center[1] - height / 2.0),
                                              polygon.rotation, center)
                    lower_right = rotate_point((center[0] + width / 2.0, center[1] - height / 2.0),
                                               polygon.rotation, center)
                    upper_left = rotate_point((center[0] - width / 2.0, center[1] + height / 2.0),
                                              polygon.rotation, center)
                    upper_right = rotate_point((center[0] + width / 2.0, center[1] + height / 2.0),
                                               polygon.rotation, center)
                    points = (lower_left, lower_right, upper_right, upper_left)
                    mask.ctx.move_to(*points[-1])
                    for point in points:
                        mask.ctx.line_to(*point)
                    mask.ctx.fill()

                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_drill(self, circle, color=None):
        color = color if color is not None else self.drill_color
        self._render_circle(circle, color)

    def _render_slot(self, slot, color):
        start = map(mul, slot.start, self.scale)
        end = map(mul, slot.end, self.scale)

        width = slot.diameter

        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if slot.level_polarity == 'dark' and
                                 (not self.invert) else cairo.OPERATOR_CLEAR)
        with self._clip_primitive(slot):
            with self._new_mask() as mask:
                mask.ctx.set_line_width(width * self.scale[0])
                mask.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
                mask.ctx.move_to(*start)
                mask.ctx.line_to(*end)
                mask.ctx.stroke()
                self.ctx.mask_surface(mask.surface, self.origin_in_pixels[0])

    def _render_amgroup(self, amgroup, color):

        mask_surface = cairo.SVGSurface(None, self.size_in_pixels[0], self.size_in_pixels[1])
        mask_ctx = cairo.Context(mask_surface)
        mask_ctx.set_matrix(self.ctx.get_matrix())

        old_surface, self.surface = self.surface, mask_surface
        old_ctx, self.ctx = self.ctx, mask_ctx

        for primitive in amgroup.primitives:
            self.render(primitive)

        old_ctx.mask_surface(mask_surface, self.origin_in_pixels[0])
        mask_surface.finish()
        self.surface, self.ctx = old_surface, old_ctx

    def _render_test_record(self, primitive, color):
        position = [pos + origin for pos, origin in
                    zip(primitive.position, self.origin_in_inch)]
        self.ctx.select_font_face(
            'monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)
        self.ctx.set_font_size(13)
        self._render_circle(Circle(position, 0.015), color)
        self.ctx.set_operator(cairo.OPERATOR_OVER
                              if primitive.level_polarity == 'dark' and
                              (not self.invert) else cairo.OPERATOR_CLEAR)
        self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position])
        self.ctx.scale(1, -1)
        self.ctx.show_text(primitive.net_name)
        self.ctx.scale(1, -1)

    def new_render_layer(self, color=None, mirror=False):
        size_in_pixels = self.scale_point(self.size_in_inch)
        m = self._xform_matrix
        matrix = cairo.Matrix(m.xx, m.yx, m.xy, m.yy, m.x0, m.y0)
        layer = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1])
        ctx = cairo.Context(layer)

        if self.invert:
            ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
            ctx.set_operator(cairo.OPERATOR_OVER)
            ctx.paint()
        if mirror:
            matrix.xx = -1.0
            matrix.x0 = self.origin_in_pixels[0] + self.size_in_pixels[0]
        self.ctx = ctx
        self.ctx.set_matrix(matrix)
        self.active_layer = layer
        self.active_matrix = matrix

    def flatten(self, color=None, alpha=None):
        color = color if color is not None else self.color
        alpha = alpha if alpha is not None else self.alpha
        self.output_ctx.set_source_rgba(color[0], color[1], color[2], alpha)
        self.output_ctx.mask_surface(self.active_layer)
        self.ctx = None
        self.active_layer = None
        self.active_matrix = None

    def paint_background(self, settings=None):
        color = settings.color if settings is not None else self.background_color
        alpha = settings.alpha if settings is not None else 1.0
        if not self.has_bg:
            self.has_bg = True
            self.output_ctx.set_source_rgba(color[0], color[1], color[2], alpha)
            self.output_ctx.paint()

    def _clip_primitive(self, primitive):
        """ Clip rendering context to pixel-aligned bounding box

        Calculates pixel- and axis- aligned bounding box, and clips current
        context to that region. Improves rendering speed significantly. This
        returns a context manager, use as follows:

            with self._clip_primitive(some_primitive):
                do_rendering_stuff()
                do_more_rendering stuff(with, arguments)

        The context manager will reset the context's clipping region when it
        goes out of scope.

        """
        class Clip:
            def __init__(clp, primitive):
                x_range, y_range = primitive.bounding_box
                xmin, xmax = x_range
                ymin, ymax = y_range

                # Round bounds to the nearest pixel outside of the primitive
                clp.xmin = math.floor(self.scale[0] * xmin)
                clp.xmax = math.ceil(self.scale[0] * xmax)

                # We need to offset Y to take care of the difference in y-pos
                # caused by flipping the axis.
                clp.ymin = math.floor(
                    (self.scale[1] * ymin) - math.ceil(self.origin_in_pixels[1]))
                clp.ymax = math.ceil(
                    (self.scale[1] * ymax) - math.floor(self.origin_in_pixels[1]))

                # Calculate width and height, rounded to the nearest pixel
                clp.width = abs(clp.xmax - clp.xmin)
                clp.height = abs(clp.ymax - clp.ymin)

            def __enter__(clp):
                # Clip current context to primitive's bounding box
                self.ctx.rectangle(clp.xmin, clp.ymin, clp.width, clp.height)
                self.ctx.clip()

            def __exit__(clp, exc_type, exc_val, traceback):
                # Reset context clip region
                self.ctx.reset_clip()

        return Clip(primitive)

    def scale_point(self, point):
        return tuple([coord * scale for coord, scale in zip(point, self.scale)])