1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# copyright 2016 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from operator import add
from itertools import combinations
from .utils import validate_coordinates, inch, metric, convex_hull
from .utils import rotate_point, nearly_equal
class Primitive:
def __init__(self, polarity_dark=True, rotation=0, **meta):
self.polarity_dark = polarity_dark
self.meta = meta
self.rotation = rotation
def __eq__(self, other):
return self.__dict__ == other.__dict__
def aperture(self):
return None
class Line(Primitive):
def __init__(self, start, end, aperture=None, polarity_dark=True, rotation=0, **meta):
super().__init__(polarity_dark, rotation, **meta)
self.start = start
self.end = end
self.aperture = aperture
@property
def angle(self):
delta_x, delta_y = tuple(end - start for end, start in zip(self.end, self.start))
return math.atan2(delta_y, delta_x)
@property
def bounding_box(self):
if isinstance(self.aperture, Circle):
width_2 = self.aperture.radius
height_2 = width_2
else:
width_2 = self.aperture.width / 2.
height_2 = self.aperture.height / 2.
min_x = min(self.start[0], self.end[0]) - width_2
max_x = max(self.start[0], self.end[0]) + width_2
min_y = min(self.start[1], self.end[1]) - height_2
max_y = max(self.start[1], self.end[1]) + height_2
return (min_x, min_y), (max_x, max_y)
@property
def bounding_box_no_aperture(self):
'''Gets the bounding box without the aperture'''
min_x = min(self.start[0], self.end[0])
max_x = max(self.start[0], self.end[0])
min_y = min(self.start[1], self.end[1])
max_y = max(self.start[1], self.end[1])
return ((min_x, min_y), (max_x, max_y))
@property
def vertices(self):
if self._vertices is None:
start = self.start
end = self.end
if isinstance(self.aperture, Rectangle):
width = self.aperture.width
height = self.aperture.height
# Find all the corners of the start and end position
start_ll = (start[0] - (width / 2.), start[1] - (height / 2.))
start_lr = (start[0] + (width / 2.), start[1] - (height / 2.))
start_ul = (start[0] - (width / 2.), start[1] + (height / 2.))
start_ur = (start[0] + (width / 2.), start[1] + (height / 2.))
end_ll = (end[0] - (width / 2.), end[1] - (height / 2.))
end_lr = (end[0] + (width / 2.), end[1] - (height / 2.))
end_ul = (end[0] - (width / 2.), end[1] + (height / 2.))
end_ur = (end[0] + (width / 2.), end[1] + (height / 2.))
# The line is defined by the convex hull of the points
self._vertices = convex_hull((start_ll, start_lr, start_ul, start_ur, end_ll, end_lr, end_ul, end_ur))
elif isinstance(self.aperture, Polygon):
points = [map(add, point, vertex)
for vertex in self.aperture.vertices
for point in (start, end)]
self._vertices = convex_hull(points)
return self._vertices
def offset(self, x_offset=0, y_offset=0):
self._changed()
self.start = tuple([coord + offset for coord, offset
in zip(self.start, (x_offset, y_offset))])
self.end = tuple([coord + offset for coord, offset
in zip(self.end, (x_offset, y_offset))])
def equivalent(self, other, offset):
if not isinstance(other, Line):
return False
equiv_start = tuple(map(add, other.start, offset))
equiv_end = tuple(map(add, other.end, offset))
return nearly_equal(self.start, equiv_start) and nearly_equal(self.end, equiv_end)
def __str__(self):
return "<Line {} to {}>".format(self.start, self.end)
def __repr__(self):
return str(self)
class Arc(Primitive):
def __init__(self, start, end, center, direction, aperture, level_polarity=None, **kwargs):
super(Arc, self).__init__(**kwargs)
self.level_polarity = level_polarity
self._start = start
self._end = end
self._center = center
self.direction = direction
self.aperture = aperture
self._to_convert = ['start', 'end', 'center', 'aperture']
@property
def flashed(self):
return False
@property
def start(self):
return self._start
@start.setter
def start(self, value):
self._changed()
self._start = value
@property
def end(self):
return self._end
@end.setter
def end(self, value):
self._changed()
self._end = value
@property
def center(self):
return self._center
@center.setter
def center(self, value):
self._changed()
self._center = value
@property
def radius(self):
dy, dx = tuple([start - center for start, center
in zip(self.start, self.center)])
return math.sqrt(dy ** 2 + dx ** 2)
@property
def start_angle(self):
dx, dy = tuple([start - center for start, center
in zip(self.start, self.center)])
return math.atan2(dy, dx)
@property
def end_angle(self):
dx, dy = tuple([end - center for end, center
in zip(self.end, self.center)])
return math.atan2(dy, dx)
@property
def sweep_angle(self):
two_pi = 2 * math.pi
theta0 = (self.start_angle + two_pi) % two_pi
theta1 = (self.end_angle + two_pi) % two_pi
if self.direction == 'counterclockwise':
return abs(theta1 - theta0)
else:
theta0 += two_pi
return abs(theta0 - theta1) % two_pi
@property
def bounding_box(self):
if self._bounding_box is None:
two_pi = 2 * math.pi
theta0 = (self.start_angle + two_pi) % two_pi
theta1 = (self.end_angle + two_pi) % two_pi
points = [self.start, self.end]
x, y = zip(*points)
if hasattr(self.aperture, 'radius'):
min_x = min(x) - self.aperture.radius
max_x = max(x) + self.aperture.radius
min_y = min(y) - self.aperture.radius
max_y = max(y) + self.aperture.radius
else:
min_x = min(x) - self.aperture.width
max_x = max(x) + self.aperture.width
min_y = min(y) - self.aperture.height
max_y = max(y) + self.aperture.height
self._bounding_box = ((min_x, min_y), (max_x, max_y))
return self._bounding_box
@property
def bounding_box_no_aperture(self):
'''Gets the bounding box without considering the aperture'''
two_pi = 2 * math.pi
theta0 = (self.start_angle + two_pi) % two_pi
theta1 = (self.end_angle + two_pi) % two_pi
points = [self.start, self.end]
x, y = zip(*points)
min_x = min(x)
max_x = max(x)
min_y = min(y)
max_y = max(y)
return ((min_x, min_y), (max_x, max_y))
def offset(self, x_offset=0, y_offset=0):
self._changed()
self.start = tuple(map(add, self.start, (x_offset, y_offset)))
self.end = tuple(map(add, self.end, (x_offset, y_offset)))
self.center = tuple(map(add, self.center, (x_offset, y_offset)))
class Circle(Primitive):
def __init__(self, position, diameter, polarity_dark=True):
super(Circle, self).__init__(**kwargs)
validate_coordinates(position)
self._position = position
self._diameter = diameter
self.hole_diameter = hole_diameter
self.hole_width = hole_width
self.hole_height = hole_height
self._to_convert = ['position', 'diameter', 'hole_diameter', 'hole_width', 'hole_height']
@property
def flashed(self):
return True
@property
def position(self):
return self._position
@position.setter
def position(self, value):
self._changed()
self._position = value
@property
def diameter(self):
return self._diameter
@diameter.setter
def diameter(self, value):
self._changed()
self._diameter = value
@property
def radius(self):
return self.diameter / 2.
@property
def hole_radius(self):
if self.hole_diameter != None:
return self.hole_diameter / 2.
return None
@property
def bounding_box(self):
if self._bounding_box is None:
min_x = self.position[0] - self.radius
max_x = self.position[0] + self.radius
min_y = self.position[1] - self.radius
max_y = self.position[1] + self.radius
self._bounding_box = ((min_x, min_y), (max_x, max_y))
return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
self.position = tuple(map(add, self.position, (x_offset, y_offset)))
def equivalent(self, other, offset):
'''Is this the same as the other circle, ignoring the offiset?'''
if not isinstance(other, Circle):
return False
if self.diameter != other.diameter or self.hole_diameter != other.hole_diameter:
return False
equiv_position = tuple(map(add, other.position, offset))
return nearly_equal(self.position, equiv_position)
class Rectangle(Primitive):
"""
When rotated, the rotation is about the center point.
Only aperture macro generated Rectangle objects can be rotated. If you aren't in a AMGroup,
then you don't need to worry about rotation
"""
def __init__(self, position, width, height, hole_diameter=0,
hole_width=0, hole_height=0, **kwargs):
super(Rectangle, self).__init__(**kwargs)
validate_coordinates(position)
self._position = position
self._width = width
self._height = height
self.hole_diameter = hole_diameter
self.hole_width = hole_width
self.hole_height = hole_height
self._to_convert = ['position', 'width', 'height', 'hole_diameter',
'hole_width', 'hole_height']
# TODO These are probably wrong when rotated
self._lower_left = None
self._upper_right = None
@property
def flashed(self):
return True
@property
def position(self):
return self._position
@position.setter
def position(self, value):
self._changed()
self._position = value
@property
def width(self):
return self._width
@width.setter
def width(self, value):
self._changed()
self._width = value
@property
def height(self):
return self._height
@height.setter
def height(self, value):
self._changed()
self._height = value
@property
def hole_radius(self):
"""The radius of the hole. If there is no hole, returns None"""
if self.hole_diameter != None:
return self.hole_diameter / 2.
return None
@property
def upper_right(self):
return (self.position[0] + (self.axis_aligned_width / 2.),
self.position[1] + (self.axis_aligned_height / 2.))
@property
def lower_left(self):
return (self.position[0] - (self.axis_aligned_width / 2.),
self.position[1] - (self.axis_aligned_height / 2.))
@property
def bounding_box(self):
if self._bounding_box is None:
ll = (self.position[0] - (self.axis_aligned_width / 2.),
self.position[1] - (self.axis_aligned_height / 2.))
ur = (self.position[0] + (self.axis_aligned_width / 2.),
self.position[1] + (self.axis_aligned_height / 2.))
self._bounding_box = ((ll[0], ll[1]), (ur[0], ur[1]))
return self._bounding_box
@property
def vertices(self):
if self._vertices is None:
delta_w = self.width / 2.
delta_h = self.height / 2.
ll = ((self.position[0] - delta_w), (self.position[1] - delta_h))
ul = ((self.position[0] - delta_w), (self.position[1] + delta_h))
ur = ((self.position[0] + delta_w), (self.position[1] + delta_h))
lr = ((self.position[0] + delta_w), (self.position[1] - delta_h))
self._vertices = [((x * self._cos_theta - y * self._sin_theta),
(x * self._sin_theta + y * self._cos_theta))
for x, y in [ll, ul, ur, lr]]
return self._vertices
@property
def axis_aligned_width(self):
return (self._cos_theta * self.width + self._sin_theta * self.height)
@property
def axis_aligned_height(self):
return (self._cos_theta * self.height + self._sin_theta * self.width)
def equivalent(self, other, offset):
"""Is this the same as the other rect, ignoring the offset?"""
if not isinstance(other, Rectangle):
return False
if self.width != other.width or self.height != other.height or self.rotation != other.rotation or self.hole_diameter != other.hole_diameter:
return False
equiv_position = tuple(map(add, other.position, offset))
return nearly_equal(self.position, equiv_position)
def __str__(self):
return "<Rectangle W {} H {} R {}>".format(self.width, self.height, self.rotation * 180/math.pi)
def __repr__(self):
return self.__str__()
class Obround(Primitive):
def __init__(self, position, width, height, hole_diameter=0,
hole_width=0,hole_height=0, **kwargs):
super(Obround, self).__init__(**kwargs)
validate_coordinates(position)
self._position = position
self._width = width
self._height = height
self.hole_diameter = hole_diameter
self.hole_width = hole_width
self.hole_height = hole_height
self._to_convert = ['position', 'width', 'height', 'hole_diameter',
'hole_width', 'hole_height' ]
@property
def flashed(self):
return True
@property
def position(self):
return self._position
@position.setter
def position(self, value):
self._changed()
self._position = value
@property
def width(self):
return self._width
@width.setter
def width(self, value):
self._changed()
self._width = value
@property
def height(self):
return self._height
@height.setter
def height(self, value):
self._changed()
self._height = value
@property
def hole_radius(self):
"""The radius of the hole. If there is no hole, returns None"""
if self.hole_diameter != None:
return self.hole_diameter / 2.
return None
@property
def orientation(self):
return 'vertical' if self.height > self.width else 'horizontal'
@property
def bounding_box(self):
if self._bounding_box is None:
ll = (self.position[0] - (self.axis_aligned_width / 2.),
self.position[1] - (self.axis_aligned_height / 2.))
ur = (self.position[0] + (self.axis_aligned_width / 2.),
self.position[1] + (self.axis_aligned_height / 2.))
self._bounding_box = ((ll[0], ll[1]), (ur[0], ur[1]))
return self._bounding_box
@property
def subshapes(self):
if self.orientation == 'vertical':
circle1 = Circle((self.position[0], self.position[1] +
(self.height - self.width) / 2.), self.width)
circle2 = Circle((self.position[0], self.position[1] -
(self.height - self.width) / 2.), self.width)
rect = Rectangle(self.position, self.width,
(self.height - self.width))
else:
circle1 = Circle((self.position[0]
- (self.height - self.width) / 2.,
self.position[1]), self.height)
circle2 = Circle((self.position[0]
+ (self.height - self.width) / 2.,
self.position[1]), self.height)
rect = Rectangle(self.position, (self.width - self.height),
self.height)
return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect}
@property
def axis_aligned_width(self):
return (self._cos_theta * self.width +
self._sin_theta * self.height)
@property
def axis_aligned_height(self):
return (self._cos_theta * self.height +
self._sin_theta * self.width)
class Polygon(Primitive):
"""
Polygon flash defined by a set number of sides.
"""
def __init__(self, position, sides, radius, hole_diameter=0,
hole_width=0, hole_height=0, **kwargs):
super(Polygon, self).__init__(**kwargs)
validate_coordinates(position)
self._position = position
self.sides = sides
self._radius = radius
self.hole_diameter = hole_diameter
self.hole_width = hole_width
self.hole_height = hole_height
self._to_convert = ['position', 'radius', 'hole_diameter',
'hole_width', 'hole_height']
@property
def flashed(self):
return True
@property
def diameter(self):
return self.radius * 2
@property
def hole_radius(self):
if self.hole_diameter != None:
return self.hole_diameter / 2.
return None
@property
def position(self):
return self._position
@position.setter
def position(self, value):
self._changed()
self._position = value
@property
def radius(self):
return self._radius
@radius.setter
def radius(self, value):
self._changed()
self._radius = value
@property
def bounding_box(self):
if self._bounding_box is None:
min_x = self.position[0] - self.radius
max_x = self.position[0] + self.radius
min_y = self.position[1] - self.radius
max_y = self.position[1] + self.radius
self._bounding_box = ((min_x, min_y), (max_x, max_y))
return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
self.position = tuple(map(add, self.position, (x_offset, y_offset)))
@property
def vertices(self):
offset = self.rotation
delta_angle = 360.0 / self.sides
points = []
for i in range(self.sides):
points.append(
rotate_point((self.position[0] + self.radius, self.position[1]), offset + delta_angle * i, self.position))
return points
def equivalent(self, other, offset):
"""
Is this the outline the same as the other, ignoring the position offset?
"""
# Quick check if it even makes sense to compare them
if type(self) != type(other) or self.sides != other.sides or self.radius != other.radius:
return False
equiv_pos = tuple(map(add, other.position, offset))
return nearly_equal(self.position, equiv_pos)
class AMGroup(Primitive):
"""
"""
def __init__(self, amprimitives, stmt = None, **kwargs):
"""
stmt : The original statment that generated this, since it is really hard to re-generate from primitives
"""
super(AMGroup, self).__init__(**kwargs)
self.primitives = []
for amprim in amprimitives:
prim = amprim.to_primitive(self.units)
if isinstance(prim, list):
for p in prim:
self.primitives.append(p)
elif prim:
self.primitives.append(prim)
self._position = None
self._to_convert = ['_position', 'primitives']
self.stmt = stmt
def to_inch(self):
if self.units == 'metric':
super(AMGroup, self).to_inch()
# If we also have a stmt, convert that too
if self.stmt:
self.stmt.to_inch()
def to_metric(self):
if self.units == 'inch':
super(AMGroup, self).to_metric()
# If we also have a stmt, convert that too
if self.stmt:
self.stmt.to_metric()
@property
def flashed(self):
return True
@property
def bounding_box(self):
# TODO Make this cached like other items
xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
minx, maxx = zip(*xlims)
miny, maxy = zip(*ylims)
min_x = min(minx)
max_x = max(maxx)
min_y = min(miny)
max_y = max(maxy)
return ((min_x, max_x), (min_y, max_y))
@property
def position(self):
return self._position
def offset(self, x_offset=0, y_offset=0):
self._position = tuple(map(add, self._position, (x_offset, y_offset)))
for primitive in self.primitives:
primitive.offset(x_offset, y_offset)
@position.setter
def position(self, new_pos):
'''
Sets the position of the AMGroup.
This offset all of the objects by the specified distance.
'''
if self._position:
dx = new_pos[0] - self._position[0]
dy = new_pos[1] - self._position[1]
else:
dx = new_pos[0]
dy = new_pos[1]
for primitive in self.primitives:
primitive.offset(dx, dy)
self._position = new_pos
def equivalent(self, other, offset):
'''
Is this the macro group the same as the other, ignoring the position offset?
'''
if len(self.primitives) != len(other.primitives):
return False
# We know they have the same number of primitives, so now check them all
for i in range(0, len(self.primitives)):
if not self.primitives[i].equivalent(other.primitives[i], offset):
return False
# If we didn't find any differences, then they are the same
return True
class Outline(Primitive):
"""
Outlines only exist as the rendering for a apeture macro outline.
They don't exist outside of AMGroup objects
"""
def __init__(self, primitives, **kwargs):
super(Outline, self).__init__(**kwargs)
self.primitives = primitives
self._to_convert = ['primitives']
if self.primitives[0].start != self.primitives[-1].end:
raise ValueError('Outline must be closed')
@property
def flashed(self):
return True
@property
def bounding_box(self):
if self._bounding_box is None:
xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
minx, maxx = zip(*xlims)
miny, maxy = zip(*ylims)
min_x = min(minx)
max_x = max(maxx)
min_y = min(miny)
max_y = max(maxy)
self._bounding_box = ((min_x, max_x), (min_y, max_y))
return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
self._changed()
for p in self.primitives:
p.offset(x_offset, y_offset)
@property
def vertices(self):
if self._vertices is None:
theta = math.radians(360/self.sides)
vertices = [(self.position[0] + (math.cos(theta * side) * self.radius),
self.position[1] + (math.sin(theta * side) * self.radius))
for side in range(self.sides)]
self._vertices = [(((x * self._cos_theta) - (y * self._sin_theta)),
((x * self._sin_theta) + (y * self._cos_theta)))
for x, y in vertices]
return self._vertices
@property
def width(self):
bounding_box = self.bounding_box()
return bounding_box[1][0] - bounding_box[0][0]
def equivalent(self, other, offset):
'''
Is this the outline the same as the other, ignoring the position offset?
'''
# Quick check if it even makes sense to compare them
if type(self) != type(other) or len(self.primitives) != len(other.primitives):
return False
for i in range(0, len(self.primitives)):
if not self.primitives[i].equivalent(other.primitives[i], offset):
return False
return True
class Region(Primitive):
"""
"""
def __init__(self, primitives, **kwargs):
super(Region, self).__init__(**kwargs)
self.primitives = primitives
self._to_convert = ['primitives']
@property
def flashed(self):
return False
@property
def bounding_box(self):
if self._bounding_box is None:
xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
minx, maxx = zip(*xlims)
miny, maxy = zip(*ylims)
min_x = min(minx)
max_x = max(maxx)
min_y = min(miny)
max_y = max(maxy)
self._bounding_box = ((min_x, min_y), (max_x, max_y))
return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
self._changed()
for p in self.primitives:
p.offset(x_offset, y_offset)
class Drill(Primitive):
""" A drill hole
"""
def __init__(self, position, diameter, **kwargs):
super(Drill, self).__init__('dark', **kwargs)
validate_coordinates(position)
self._position = position
self._diameter = diameter
self._to_convert = ['position', 'diameter']
@property
def flashed(self):
return False
@property
def position(self):
return self._position
@position.setter
def position(self, value):
self._changed()
self._position = value
@property
def diameter(self):
return self._diameter
@diameter.setter
def diameter(self, value):
self._changed()
self._diameter = value
@property
def radius(self):
return self.diameter / 2.
@property
def bounding_box(self):
if self._bounding_box is None:
min_x = self.position[0] - self.radius
max_x = self.position[0] + self.radius
min_y = self.position[1] - self.radius
max_y = self.position[1] + self.radius
self._bounding_box = ((min_x, min_y), (max_x, max_y))
return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
self._changed()
self.position = tuple(map(add, self.position, (x_offset, y_offset)))
def __str__(self):
return '<Drill %f %s (%f, %f)>' % (self.diameter, self.units, self.position[0], self.position[1])
class Slot(Primitive):
""" A drilled slot
"""
def __init__(self, start, end, diameter, **kwargs):
super(Slot, self).__init__('dark', **kwargs)
validate_coordinates(start)
validate_coordinates(end)
self.start = start
self.end = end
self.diameter = diameter
self._to_convert = ['start', 'end', 'diameter']
@property
def flashed(self):
return False
@property
def bounding_box(self):
if self._bounding_box is None:
radius = self.diameter / 2.
min_x = min(self.start[0], self.end[0]) - radius
max_x = max(self.start[0], self.end[0]) + radius
min_y = min(self.start[1], self.end[1]) - radius
max_y = max(self.start[1], self.end[1]) + radius
self._bounding_box = ((min_x, min_y), (max_x, max_y))
return self._bounding_box
def offset(self, x_offset=0, y_offset=0):
self.start = tuple(map(add, self.start, (x_offset, y_offset)))
self.end = tuple(map(add, self.end, (x_offset, y_offset)))
class TestRecord(Primitive):
""" Netlist Test record
"""
__test__ = False # This is not a PyTest unit test.
def __init__(self, position, net_name, layer, **kwargs):
super(TestRecord, self).__init__(**kwargs)
validate_coordinates(position)
self.position = position
self.net_name = net_name
self.layer = layer
self._to_convert = ['position']
class RegionGroup:
def __init__(self):
self.outline = []
def __bool__(self):
return bool(self.outline)
def append(self, primitive):
self.outline.append(primitive)
|