1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
import math
import itertools
from dataclasses import dataclass, KW_ONLY, replace
from .gerber_statements import *
class GraphicPrimitive:
_ : KW_ONLY
polarity_dark : bool = True
unit : str = None
def rotate_point(x, y, angle, cx=0, cy=0):
""" rotate point (x,y) around (cx,cy) clockwise angle radians """
return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
@dataclass
class Circle(GraphicPrimitive):
x : float
y : float
r : float # Here, we use radius as common in modern computer graphics, not diameter as gerber uses.
def bounds(self):
return ((self.x-self.r, self.y-self.r), (self.x+self.r, self.y+self.r))
@dataclass
class Obround(GraphicPrimitive):
x : float
y : float
w : float
h : float
rotation : float # radians!
def decompose(self):
''' decompose obround to two circles and one rectangle '''
cx = self.x + self.w/2
cy = self.y + self.h/2
if self.w > self.h:
x = self.x + self.h/2
yield Circle(x, cy, self.h/2)
yield Circle(x + self.w, cy, self.h/2)
yield Rectangle(x, self.y, self.w - self.h, self.h)
elif self.h > self.w:
y = self.y + self.w/2
yield Circle(cx, y, self.w/2)
yield Circle(cx, y + self.h, self.w/2)
yield Rectangle(self.x, y, self.w, self.h - self.w)
else:
yield Circle(cx, cy, self.w/2)
def bounds(self):
return ((self.x-self.w/2, self.y-self.h/2), (self.x+self.w/2, self.y+self.h/2))
@dataclass
class ArcPoly(GraphicPrimitive):
""" Polygon whose sides may be either straight lines or circular arcs """
# list of (x : float, y : float) tuples. Describes closed outline, i.e. first and last point are considered
# connected.
outline : [(float,)]
# list of radii of segments, must be either None (all segments are straight lines) or same length as outline.
# Straight line segments have None entry.
arc_centers : [(float,)]
@property
def segments(self):
return itertools.zip_longest(self.outline[:-1], self.outline[1:], self.radii or [])
def bounds(self):
for (x1, y1), (x2, y2), radius in self.segments:
return
def __len__(self):
return len(self.outline)
def __bool__(self):
return bool(len(self))
@dataclass
class Line(GraphicPrimitive):
x1 : float
y1 : float
x2 : float
y2 : float
width : float
# FIXME bounds
@dataclass
class Arc(GraphicPrimitive):
x1 : float
y1 : float
x2 : float
y2 : float
cx : float
cy : float
flipped : bool
width : float
# FIXME bounds
@dataclass
class Rectangle(GraphicPrimitive):
# coordinates are center coordinates
x : float
y : float
w : float
h : float
rotation : float # radians, around center!
def bounds(self):
return ((self.x, self.y), (self.x+self.w, self.y+self.h))
@property
def center(self):
return self.x + self.w/2, self.y + self.h/2
class RegularPolygon(GraphicPrimitive):
x : float
y : float
r : float
n : int
rotation : float # radians!
def decompose(self):
''' convert n-sided gerber polygon to normal Region defined by outline '''
delta = 2*math.pi / self.n
yield Region([
(self.x + math.cos(self.rotation + i*delta) * self.r,
self.y + math.sin(self.rotation + i*delta) * self.r)
for i in range(self.n) ])
|