1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
import math
import itertools
from dataclasses import dataclass, KW_ONLY, replace
from .gerber_statements import *
class GraphicPrimitive:
_ : KW_ONLY
polarity_dark : bool = True
def rotate_point(x, y, angle, cx=0, cy=0):
""" rotate point (x,y) around (cx,cy) clockwise angle radians """
return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle),
cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle))
def min_none(a, b):
if a is None:
return b
if b is None:
return a
return min(a, b)
def max_none(a, b):
if a is None:
return b
if b is None:
return a
return max(a, b)
def add_bounds(b1, b2):
(min_x_1, min_y_1), (max_x_1, max_y_1) = b1
(min_x_2, min_y_2), (max_x_2, max_y_2) = b2
min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2)
max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2)
return ((min_x, min_y), (max_x, max_y))
@dataclass
class Circle(GraphicPrimitive):
x : float
y : float
r : float # Here, we use radius as common in modern computer graphics, not diameter as gerber uses.
def bounding_box(self):
return ((self.x-self.r, self.y-self.r), (self.x+self.r, self.y+self.r))
def to_svg(self):
return 'circle', (), dict(cx=x, cy=y, r=r)
@dataclass
class Obround(GraphicPrimitive):
x : float
y : float
w : float
h : float
rotation : float # radians!
def to_line(self):
if self.w > self.h:
w, a, b = self.h, self.w, 0
else:
w, a, b = self.w, 0, self.h
return Line(
*rotate_point(self.x-a/2, self.y-b/2, self.rotation, self.x, self.y),
*rotate_point(self.x+a/2, self.y+b/2, self.rotation, self.x, self.y),
w)
def bounding_box(self):
return self.to_line().bounding_box()
def to_svg(self):
return self.to_line().to_svg()
def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise):
# This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just
# happens to be anything but in practice.
#
# Online there are a number of algorithms to be found solving this problem. Often, they solve the more general
# problem for elliptic arcs. We can keep things simple here since we only have circular arcs.
#
# This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus
# sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2).
# Center arc on cx, cy
x1 -= cx
x2 -= cx
y1 -= cy
y2 -= cy
clockwise = bool(clockwise) # bool'ify for XOR/XNOR below
# Calculate radius
r = math.sqrt(x1**2 + y1**2)
# Calculate in which half-planes (north/south, west/east) P1 and P2 lie.
# Note that we assume the y axis points upwards, as in Gerber and maths.
# SVG has its y axis pointing downwards.
p1_west = x1 < 0
p1_north = y1 > 0
p2_west = x2 < 0
p2_north = y2 > 0
# Calculate bounding box of P1 and P2
min_x = min(x1, x2)
min_y = min(y1, y2)
max_x = max(x1, x2)
max_y = max(y1, y2)
# North
# ^
# |
# |(0,0)
# West <-----X-----> East
# |
# +Y |
# ^ v
# | South
# |
# +-----> +X
#
# Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box.
# Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection.
# Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection
# point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the
# absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the
# intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the
# corresponding coordinate of the bounding box without min()/max()'ing first.
# Handle north/south halfplanes
if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane
if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west
max_y = r # add north to bounding box
else: # arc is counter-clockwise west -> east or clockwise east -> west
min_y = -r # south
else: # Arc starts and ends in same halfplane west/east
# Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for
# angle comparisons.
small_arc_is_north_to_south = y1 > y2
small_arc_is_clockwise = small_arc_is_north_to_south == p1_west
if small_arc_is_clockwise != clockwise:
min_y, max_y = -r, r # intersect aabb with both north and south
# Handle west/east halfplanes
if p1_north != p2_north:
if p1_north == clockwise:
max_x = r # east
else:
min_x = -r # west
else:
small_arc_is_west_to_east = x1 < x2
small_arc_is_clockwise = small_arc_is_west_to_east == p1_north
if small_arc_is_clockwise != clockwise:
min_x, max_x = -r, r # intersect aabb with both north and south
return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy)
def point_distance(a, b):
return math.sqrt((b[0] - a[0])**2 + (b[1] - a[1])**2)
def point_line_distance(l1, l2, p):
x1, y1 = l1
x2, y2 = l2
x0, y0 = p
return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1))/point_distance(l1, l2)
def svg_arc(old, new, center, clockwise):
r = point_distance(old, new)
d = point_line_distance(old, new, center)
sweep_flag = int(clockwise)
large_arc = int((d > 0) == clockwise) # FIXME check signs
return f'A {r:.6} {r:.6} {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}'
@dataclass
class ArcPoly(GraphicPrimitive):
""" Polygon whose sides may be either straight lines or circular arcs """
# list of (x : float, y : float) tuples. Describes closed outline, i.e. first and last point are considered
# connected.
outline : [(float,)]
# list of radii of segments, must be either None (all segments are straight lines) or same length as outline.
# Straight line segments have None entry.
arc_centers : [(float,)] = None
@property
def segments(self):
ol = self.outline
return itertools.zip_longest(ol, ol[1:] + [ol[0]], self.arc_centers)
def bounding_box(self):
bbox = (None, None), (None, None)
for (x1, y1), (x2, y2), arc in self.segments:
if arc:
clockwise, center = arc
bbox = add_bounds(bbox, arc_bounds(x1, y1, x2, y2, *center, clockwise))
else:
line_bounds = (min(x1, x2), min(y1, y2)), (max(x1, x2), max(y1, y2))
bbox = add_bounds(bbox, line_bounds)
def __len__(self):
return len(self.outline)
def __bool__(self):
return bool(len(self))
def _path_d(self):
if len(self.outline) == 0:
return
yield f'M {outline[0][0]:.6}, {outline[0][1]:.6}'
for old, new, arc in self.segments:
if not arc:
yield f'L {new[0]:.6} {new[1]:.6}'
else:
clockwise, center = arc
yield svg_arc(old, new, center, clockwise)
def to_svg(self):
return 'path', [], {'d': ' '.join(self._path_d())}
@dataclass
class Line(GraphicPrimitive):
x1 : float
y1 : float
x2 : float
y2 : float
width : float
def bounding_box(self):
r = self.width / 2
return add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
def to_svg(self):
return 'path', [], dict(
d=f'M {self.x1:.6} {self.y1:.6} L {self.x2:.6} {self.y2:.6}',
style=f'stroke-width: {self.width:.6}; stroke-linecap: round')
@dataclass
class Arc(GraphicPrimitive):
x1 : float
y1 : float
x2 : float
y2 : float
cx : float
cy : float
clockwise : bool
width : float
def bounding_box(self):
r = self.w/2
endpoints = add_bounds(Circle(self.x1, self.y1, r).bounding_box(), Circle(self.x2, self.y2, r).bounding_box())
arc_r = point_distance((self.cx, self.cy), (self.x1, self.y1))
# extend C -> P1 line by line width / 2 along radius
dx, dy = self.x1 - self.cx, self.y1 - self.cy
x1 = self.x1 + dx/arc_r * r
y1 = self.y1 + dy/arc_r * r
# same for C -> P2
dx, dy = self.x2 - self.cx, self.y2 - self.cy
x2 = self.x2 + dx/arc_r * r
y2 = self.y2 + dy/arc_r * r
arc = arc_bounds(x1, y1, x2, y2, cx, cy, self.clockwise)
return add_bounds(endpoints, arc) # FIXME add "include_center" switch
def to_svg(self):
arc = svg_arc((self.x1, self.y1), (self.x2, self.y2), (self.cx, self.cy), self.clockwise)
return 'path', [], dict(
d=f'M {self.x1:.6} {self.y1:.6} {arc}',
style=f'stroke-width: {self.width:.6}; stroke-linecap: round')
def svg_rotation(angle_rad):
return f'rotation({angle_rad/math.pi*180:.4})'
@dataclass
class Rectangle(GraphicPrimitive):
# coordinates are center coordinates
x : float
y : float
w : float
h : float
rotation : float # radians, around center!
def bounding_box(self):
return self.to_arc_poly().bounding_box()
def to_arc_poly(self):
sin, cos = math.sin(self.rotation), math.cos(self.rotation)
sw, cw = sin*self.w/2, cos*self.w/2
sh, ch = sin*self.h/2, cos*self.h/2
x, y = self.x, self.y
return ArcPoly([
(x - (cw+sh), y - (ch+sw)),
(x - (cw+sh), y + (ch+sw)),
(x + (cw+sh), y + (ch+sw)),
(x + (cw+sh), y - (ch+sw)),
])
@property
def center(self):
return self.x + self.w/2, self.y + self.h/2
def to_svg(self):
x, y = self.x - self.w/2, self.y - self.h/2
return 'rect', [], dict(x=x, y=y, w=self.w, h=self.h, transform=svg_rotation(self.rotation))
class RegularPolygon(GraphicPrimitive):
x : float
y : float
r : float
n : int
rotation : float # radians!
def to_arc_poly(self):
''' convert n-sided gerber polygon to normal ArcPoly defined by outline '''
delta = 2*math.pi / self.n
return ArcPoly([
(self.x + math.cos(self.rotation + i*delta) * self.r,
self.y + math.sin(self.rotation + i*delta) * self.r)
for i in range(self.n) ])
def bounding_box(self):
return self.to_arc_poly().bounding_box()
def to_svg(self):
return self.to_arc_poly().to_svg()
|