1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
from dataclasses import dataclass, KW_ONLY
from . import graphic_primitives as gp
from .gerber_statements import *
@dataclass
class GerberObject:
_ : KW_ONLY
polarity_dark : bool = True
def to_primitives(self):
raise NotImplementedError()
@dataclass
class Flash(GerberObject):
x : float
y : float
aperture : object
def with_offset(self, dx, dy):
return replace(self, x=self.x+dx, y=self.y+dy)
def rotate(self, rotation, cx=None, cy=None):
self.x, self.y = gp.rotate_point(self.x, self.y, rotation, cx, cy)
def to_primitives(self):
yield from self.aperture.flash(self.x, self.y)
def to_statements(self, gs):
yield from gs.set_polarity(self.polarity_dark)
yield from gs.set_aperture(self.aperture)
yield FlashStmt(self.x, self.y)
class Region(GerberObject):
def __init__(self, outline=[], arc_centers=None, *, polarity_dark):
super().__init__(self, polarity_dark=polarity_dark)
self.poly = gp.ArcPoly()
def with_offset(self, dx, dy):
return Region([ (x+dx, y+dy) for x, y in outline ], radii, polarity_dark=self.polarity_dark)
def rotate(self, angle, cx=0, cy=0):
self.poly.outline = [ gp.rotate_point(x, y, angle, cx, cy) for x, y in self.poly.outline ]
self.poly.arc_centers = [ gp.rotate_point(x, y, angle, cx, cy) for x, y in self.poly.arc_centers ]
def append(self, obj):
if not self.outline:
self.poly.outline.append(obj.p1)
self.poly.outline.append(obj.p2)
if isinstance(obj, Arc):
self.poly.arc_centers.append(obj.center)
else:
self.poly.arc_centers.append(None)
def to_primitives(self):
self.poly.polarity_dark = polarity_dark
yield self.poly
def to_statements(self, gs):
yield RegionStartStmt()
yield from gs.set_current_point(self.poly.outline[0])
for point, arc_center in zip(self.poly.outline, self.poly.arc_centers):
if arc_center is None:
yield from gs.set_interpolation_mode(LinearModeStmt)
yield InterpolateStmt(*point)
else:
cx, cy = arc_center
x2, y2 = point
yield from gs.set_interpolation_mode(CircularCCWModeStmt)
yield InterpolateStmt(x2, y2, cx-x2, cy-y2)
yield RegionEndStmt()
@dataclass
class Line(GerberObject):
# Line with *round* end caps.
x1 : float
y1 : float
x2 : float
y2 : float
aperture : object
def with_offset(self, dx, dy):
return replace(self, x1=self.x1+dx, y1=self.y1+dy, x2=self.x2+dx, y2=self.y2+dy)
def rotate(self, rotation, cx=None, cy=None):
if cx is None:
cx = (self.x1 + self.x2) / 2
cy = (self.y1 + self.y2) / 2
self.x1, self.y1 = gp.rotate_point(self.x1, self.y1, rotation, cx, cy)
self.x2, self.y2 = gp.rotate_point(self.x2, self.y2, rotation, cx, cy)
@property
def p1(self):
return self.x1, self.y1
@property
def p2(self):
return self.x2, self.y2
def to_primitives(self):
yield gp.Line(*self.p1, *self.p2, self.aperture.equivalent_width, polarity_dark=self.polarity_dark)
def to_statements(self, gs):
yield from gs.set_aperture(self.aperture)
yield from gs.set_interpolation_mode(LinearModeStmt)
yield from gs.set_current_point(self.p1)
yield InterpolateStmt(*self.p2)
@dataclass
class Drill(GerberObject):
x : float
y : float
diameter : float
def with_offset(self, dx, dy):
return replace(self, x=self.x+dx, y=self.y+dy)
def rotate(self, angle, cx=None, cy=None):
self.x, self.y = gp.rotate_point(self.x, self.y, angle, cx, cy)
def to_primitives(self):
yield gp.Circle(self.x, self.y, self.diameter/2)
@dataclass
class Slot(GerberObject):
x1 : float
y1 : float
x2 : float
y2 : float
width : float
def with_offset(self, dx, dy):
return replace(self, x1=self.x1+dx, y1=self.y1+dy, x2=self.x2+dx, y2=self.y2+dy)
def rotate(self, rotation, cx=None, cy=None):
if cx is None:
cx = (self.x1 + self.x2) / 2
cy = (self.y1 + self.y2) / 2
self.x1, self.y1 = gp.rotate_point(self.x1, self.y1, rotation, cx, cy)
self.x2, self.y2 = gp.rotate_point(self.x2, self.y2, rotation, cx, cy)
@property
def p1(self):
return self.x1, self.y1
@property
def p2(self):
return self.x2, self.y2
def to_primitives(self):
yield gp.Line(*self.p1, *self.p2, self.width, polarity_dark=self.polarity_dark)
class Arc(GerberObject):
x : float
y : float
r : float
angle1 : float # radians!
angle2 : float # radians!
aperture : object
@classmethod
def from_coords(kls, start, end, center_delta, aperture, flipped=False, polarity_dark=True):
x0, y0 = start
x1, y1 = end
dx, dy = center_delta
cx, cy = x0+dx, y0+dy
angle1 = math.atan2(y0-cy, x0-cx)
angle2 = math.atan2(y1-cy, x1-cx)
aperture = self.aperture
if flipped:
angle1, angle2 = angle2, angle1
r = math.sqrt(dx**2 + dy**2)
# r should be approximately (depending on coordinate resolution) equal for center->start and center->end
return kls(cx, cy, r, angle1, angle2, polarity_dark=polarity_dark)
def with_offset(self, dx, dy):
return replace(self, x=self.x+dx, y=self.y+dy)
@property
def p1(self):
return self.x + self.r*sin(self.angle1), self.y + self.r*cos(self.angle1)
@property
def p2(self):
return self.x + self.r*sin(self.angle2), self.y + self.r*cos(self.angle2)
@property
def center(self):
return (self.x, self.y)
def rotate(self, rotation, cx=None, cy=None):
self.x, self.y = gp.rotate_point(self.x, self.y, rotation, cx, cy)
self.angle1 = (self.angle1+rotation) % (2*math.pi)
self.angle2 = (self.angle2+rotation) % (2*math.pi)
def to_primitives(self):
yield gp.Arc(self.x, self.y, self.r, self.angle1, self.angle2, self.aperture.equivalent_width, polarity_dark=self.polarity_dark)
def to_statements(self, gs):
yield from gs.set_aperture(self.aperture)
yield from gs.set_interpolation_mode(CircularCCWModeStmt)
yield from gs.set_current_point(self.p1)
x2, y2 = self.p2
yield InterpolateStmt(x2, y2, self.x-x2, self.y-y2)
|