1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Jan Götte <gerbonara@jaseg.de>
import operator
import re
import ast
class Expression(object):
@property
def value(self):
return self
def optimized(self, variable_binding={}):
return self
def __str__(self):
return f'<{self.to_gerber()}>'
class UnitExpression(Expression):
def __init__(self, expr, unit):
self._expr = expr
self.unit = unit
def to_gerber(self, unit=None):
return self.converted(unit).optimized().to_gerber()
def __eq__(self, other):
return type(other) == type(self) and \
self.unit == other.unit and\
self._expr == other._expr
def __str__(self):
return f'<{self.expr.to_gerber()} {self.unit}>'
def converted(self, unit):
if unit is None or self.unit == unit:
return self._expr
elif unit == 'mm':
return OperatorExpression.mul(self._expr, MILLIMETERS_PER_INCH)
elif unit == 'inch':
return OperatorExpression.div(self._expr, MILLIMETERS_PER_INCH)
else:
raise ValueError('invalid unit, must be "inch" or "mm".')
def calculate(self, variable_binding={}, unit=None):
expr = self.converted(unit).optimized(variable_binding)
if not isinstance(expr, ConstantExpression):
raise IndexError(f'Cannot fully resolve expression due to unresolved variables: {expr} with variables {variable_binding}')
class ConstantExpression(Expression):
def __init__(self, value):
self._value = value
@property
def value(self):
return self._value
def __float__(self):
return float(self._value)
def __eq__(self, other):
return type(self) == type(other) and self._value == other._value
def to_gerber(self, _unit=None):
if isinstance(self._value, str):
return self._value
return f'{self.value:.6f}'.rstrip('0').rstrip('.')
class VariableExpression(Expression):
def __init__(self, number):
self.number = number
def optimized(self, variable_binding={}):
if self.number in variable_binding:
return ConstantExpression(variable_binding[self.number])
return self
def __eq__(self, other):
return type(self) == type(other) and \
self.number == other.number
def to_gerber(self, _unit=None):
return f'${self.number}'
class OperatorExpression(Expression):
def __init__(self, op, l, r):
self.op = op
self.l = ConstantExpression(l) if isinstance(l, (int, float)) else l
self.r = ConstantExpression(r) if isinstance(r, (int, float)) else r
def __eq__(self, other):
return type(self) == type(other) and \
self.op == other.op and \
self.l == other.l and \
self.r == other.r
def optimized(self, variable_binding={}):
l = self.l.optimized(variable_binding)
r = self.r.optimized(variable_binding)
if self.op in (operator.add, operator.mul):
if id(r) < id(l):
l, r = r, l
if isinstance(l, ConstantExpression) and isinstance(r, ConstantExpression):
return ConstantExpression(self.op(float(r), float(l)))
return OperatorExpression(self.op, l, r)
def to_gerber(self, unit=None):
lval = self.l.to_gerber(unit)
rval = self.r.to_gerber(unit)
if isinstance(self.l, OperatorExpression):
lval = f'({lval})'
if isinstance(self.r, OperatorExpression):
rval = f'({rval})'
op = {operator.add: '+',
operator.sub: '-',
operator.mul: 'x',
operator.truediv: '/'} [self.op]
return f'{lval}{op}{rval}'
def _map_expression(node):
if isinstance(node, ast.Num):
return ConstantExpression(node.n)
elif isinstance(node, ast.BinOp):
op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv}
return OperatorExpression(op_map[type(node.op)], _map_expression(node.left), _map_expression(node.right))
elif isinstance(node, ast.UnaryOp):
if type(node.op) == ast.UAdd:
return _map_expression(node.operand)
else:
return OperatorExpression(operator.sub, ConstantExpression(0), _map_expression(node.operand))
elif isinstance(node, ast.Name):
return VariableExpression(int(node.id[3:])) # node.id has format var[0-9]+
else:
raise SyntaxError('Invalid aperture macro expression')
def _parse_expression(expr):
expr = expr.lower().replace('x', '*')
expr = re.sub(r'\$([0-9]+)', r'var\1', expr)
try:
parsed = ast.parse(expr, mode='eval').body
except SyntaxError as e:
raise SyntaxError('Invalid aperture macro expression') from e
return _map_expression(parsed)
def parse_macro(macro, unit):
blocks = re.sub(r'\s', '', macro).split('*')
variables = {}
for block in blocks:
block = block.strip()
if block[0:1] == '0 ': # comment
continue
elif block[0] == '$': # variable definition
name, expr = block.partition('=')
variables[int(name[1:])] = _parse_expression(expr)
else: # primitive
primitive, args = block.split(',')
yield PRIMITIVE_CLASSES[int(primitive)](unit=unit, args=list(map(_parse_expression, args)))
if __name__ == '__main__':
import sys
for line in sys.stdin:
expr = _parse_expression(line.strip())
print(expr, '->', expr.optimized())
|