1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Jan Götte <gerbonara@jaseg.de>
import operator
import re
class Expression(object):
@property
def value(self):
return self
def optimized(self):
return self
class UnitExpression(Expression):
def __init__(self, expr, unit):
self._expr = expr
self.unit = unit
def to_gerber(self, unit=None):
return self.converted(unit).optimized().to_gerber()
def __eq__(self, other):
return type(other) == type(self) and \
self.unit == other.unit and\
self._expr == other._expr
def __str__(self):
return f'<{str(self.expr)[1:-1]} {self.unit}>'
def converted(self, unit):
if unit is None or self.unit == unit:
return self._expr
elif unit == 'mm':
return OperatorExpression.mul(self._expr, MILLIMETERS_PER_INCH)
elif unit == 'inch':
return OperatorExpression.div(self._expr, MILLIMETERS_PER_INCH)
else:
raise ValueError('invalid unit, must be "inch" or "mm".')
def calculate(self, variable_binding={}, unit=None):
expr = self.converted(unit).optimized(variable_binding)
if not isinstance(expr, ConstantExpression):
raise IndexError(f'Cannot fully resolve expression due to unresolved variables: {expr} with variables {variable_binding}')
class ConstantExpression(Expression):
def __init__(self, value):
self._value = value
@property
def value(self):
return self._value
def __float__(self):
return float(self._value)
def __eq__(self, other):
return type(self) == type(other) and self._value == other._value
def to_gerber(self, _unit=None):
if isinstance(self._value, str):
return self._value
return f'{self.value:.6f}'.rstrip('0').rstrip('.')
def __str__(self):
return f'<{self._value}>'
class VariableExpression(Expression):
def __init__(self, number):
self.number = number
def optimized(variable_binding={}):
if self.number in variable_binding:
return ConstantExpression(variable_binding[self.number])
return self
def __eq__(self, other):
return type(self) == type(other) and \
self.number == other.number
def to_gerber(self, _unit=None):
return f'${self.number}'
def __str__(self):
return f'<@{self.number}>'
class OperatorExpression(Expression):
def __init__(self, op, l, r):
super(OperatorExpression, self).__init__(Expression.OPERATOR)
self.op = op
self.l = ConstantExpression(l) if isinstance(l, (int, float)) else l
self.r = ConstantExpression(r) if isinstance(r, (int, float)) else r
def __eq__(self, other):
return type(self) == type(other) and \
self.op == other.op and \
self.lvalue == other.lvalue and \
self.rvalue == other.rvalue
def optimized(self, variable_binding={}):
l = self.lvalue.optimized(variable_binding)
r = self.rvalue.optimized(variable_binding)
if self.op in (operator.add, operator.mul):
if hash(r) < hash(l):
l, r = r, l
if isinstance(l, ConstantExpression) and isinstance(r, ConstantExpression):
return ConstantExpression(self.op(float(r), float(l)))
return OperatorExpression(self.op, l, r)
def to_gerber(self, unit=None):
lval = self.lvalue.to_gerber(unit)
rval = self.rvalue.to_gerber(unit)
op = {OperatorExpression.ADD: '+',
OperatorExpression.SUB: '-',
OperatorExpression.MUL: 'x',
OperatorExpression.DIV: '/'} [self.op]
return f'({lval}{op}{rval})'
def __str__(self):
op = {operator.add: '+', operator.sub: '-', operator.mul: '*', operator.truediv: '/'}[self.op]
return f'<{str(self.lvalue)[1:-1]} {op} {str(self.rvalue)[1:-1]}>'
operator_map = {
'+': operator.add,
'-': operator.sub,
'x': operator.mul,
'X': operator.mul,
'/': operator.truediv,
}
precedence_map = {
operator.add : 0,
operator.sub : 0,
operator.mul : 1,
operator.truediv : 1,
}
def _parse_expression(expr_str):
output_stack = []
operator_stack = []
drop_unary = lambda s: (s[0] == '-', s[1:] if s[0] in '-+' else s)
negate = lambda expr: OperatorExpression(operator.sub, ConstantExpression(0), expr)
# See http://faculty.cs.niu.edu/~hutchins/csci241/eval.htm
# We handle the unary +/- operators by including them into variable/number/parenthesis tokens.
for variable, number, operator, parenthesis in re.findall(r'([-+]?\$[0-9]+)|([-+]?[0-9]+)|([-+]?\(|\))|([-+xX/])', expr_str):
if variable:
is_negative, variable = drop_unary(variable)
var_ex = VariableExpression(int(variable[1:]))
output_stack.append(negate(var_ex) if is_negative else var_ex)
def _parse_expression(expr_str):
output_stack = []
operator_stack = []
drop_unary = lambda s: (s[0] == '-', s[1:] if s[0] in '-+' else s)
negate = lambda expr: OperatorExpression(operator.sub, ConstantExpression(0), expr)
# See http://faculty.cs.niu.edu/~hutchins/csci241/eval.htm
# We handle the unary +/- operators by including them into variable/number/parenthesis tokens.
for variable, number, operator, parenthesis in re.findall(r'([-+xX/])|([-+]?\$[0-9]+)|([-+]?[0-9]+\.?[0-9]*)|([()])', expr_str):
if variable:
is_negative, variable = drop_unary(variable)
var_ex = VariableExpression(int(variable[1:]))
output_stack.append(negate(var_ex) if is_negative else var_ex)
elif number:
output_stack.append(ConstantExpression(float(number)))
elif parenthesis[-1] == '(': # be careful, we might have a leading unary +/- here!
is_negative, parenthesis = drop_unary(parenthesis)
if is_negative:
operator_stack.push('-')
operator_stack.push('(')
elif parenthesis == ')': # here we cannot have a leading unary +/-
if not operator_stack:
raise SyntaxError('Unbalanced parenthesis in aperture macro expression')
while operator_stack and not operator_stack[-1] == '(':
op = operator_stack.pop()
l, r = output_stack.pop(), output_stack.pop()
output_stack.append(OperatorExpression(op, l, r))
assert output_stack.pop() == '('
if output_stack[-1] == '-':
output_stack.append(negate(output_stack.pop()))
elif operator:
operator = operator_map[operator]
if not operator_stack or operator_stack[-1] == '(':
operator_stack.push(operator)
else:
while operator_stack and operator_stack[-1] != '(' and\
precedence_map[operator] <= precedence_map[operator_stack[-1]]:
output_stack.append(OperatorExpression(operator_stack.pop(), output_stack.pop(), output_stack.pop()))
operator_stack.push(operator)
for operator in reversed(operator_stack):
if operator == '(':
raise SyntaxError('Unbalanced parenthesis in aperture macro expression')
output_stack.append(OperatorExpression(operator_stack.pop(), output_stack.pop(), output_stack.pop()))
print(output_stack, operator_stack)
if len(output_stack) != 1:
raise SyntaxError('Invalid aperture macro expression')
return output_stack[0]
def parse_macro(macro, unit):
blocks = re.sub(r'\s', '', macro).split('*')
variables = {}
for block in blocks:
block = block.strip()
if block[0] == '$': # variable definition
name, expr = block.partition('=')
variables[int(name[1:])] = _parse_expression(expr)
else: # primitive
primitive, args = block.split(',')
yield PRIMITIVE_CLASSES[int(primitive)](unit=unit, args=list(map(_parse_expression, args)))
if __name__ == '__main__':
import sys
for line in sys.stdin:
print(_parse_expression(line.strip()))
|