summaryrefslogtreecommitdiff
path: root/gerbonara/cad/primitives.py
blob: 65080d8c48a1d9d7c47ee7ee21cd6815b2a28eec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import math
from copy import copy
from itertools import zip_longest
from dataclasses import dataclass, field, KW_ONLY

from ..utils import LengthUnit, MM, rotate_point, svg_arc
from ..layers import LayerStack
from ..graphic_objects import Line, Arc, Flash
from ..apertures import Aperture, CircleAperture, RectangleAperture, ExcellonTool


def sgn(x):
    return -1 if x < 0 else 1


class Board:
    def __init__(self):
        self.objects = set()

    def to_layer_stack(self, layer_stack):
        if layer_stack is None:
            layer_stack = LayerStack()

        for obj in self.objects:
            obj.render(stack)


@dataclass
class Positioned:
    x: float
    y: float
    _: KW_ONLY
    rotation: float = 0.0
    unit: LengthUnit = MM
    parent: object = None

    @property
    def abs_pos(self, dx, dy, da):
        x, y = rotate_point(self.x, self.y, da)

        if self.parent is None:
            px, py, pa = dx, dy, 0
        else:
            px, py, pa = self.parent.abs_pos(dx, dy, da)

        return x+px, y+py, self.rotation+da+pa


@dataclass
class Pad(Positioned):
    pass

@dataclass
class SMDPad(Pad):
    copper_aperture: Aperture
    mask_aperture: Aperture
    paste_aperture: Aperture
    silk_features: list
    side: str = 'top'

    def to_layer_stack(self, layer_stack):
        x, y, rotation = self.abs_pos
        stack[self.side, 'copper'].objects.append(Flash(x, y, self.copper_aperture.rotated(rotation), unit=self.unit))
        stack[self.side, 'mask'  ].objects.append(Flash(x, y, self.mask_aperture.rotated(rotation), unit=self.unit))
        stack[self.side, 'paste' ].objects.append(Flash(x, y, self.paste_aperture.rotated(rotation), unit=self.unit))
        stack[self.side, 'silk'  ].objects.extend([copy(feature).rotate(rotation).offset(x, y, self.unit)
                                                 for feature in self.silk_features])

    def flip(self):
        self.side = 'top' if self.side == 'bottom' else 'top'


class THTPad(Pad):
    drill_dia: float
    pad_top: SMDPad
    pad_bottom: SMDPad = None
    aperture_inner: Aperture = None
    plated: bool = True

    def __post_init__(self):
        if self.pad_bottom is None:
            self.pad_bottom = copy(self.pad_top)
            self.pad_bottom.flip()

        self.pad_top.parent = self.pad_bottom.parent = self

        if (self.pad_top.side, self.pad_bottom.side) != ('top', 'bottom'):
            raise ValueError(f'The top and bottom pads must have side set to top and bottom, respectively. Currently, the top pad side is set to {self.pad_top.side} and the bottom pad side to {self.pad_bottom.side}.')

    def to_layer_stack(self, layer_stack, x, y, rotation):
        x, y, rotation = self.abs_pos
        self.top_pad.to_layer_stack(layer_stack)
        self.bottom_pad.to_layer_stack(layer_stack)

        for (side, use), layer in layer_stack.inner_layers:
            layer.objects.append(Flash(x, y, self.aperture_inner.rotated(rotation), unit=self.unit))

        hole = Flash(self.x, self.y, ExcellonTool(self.drill_dia, plated=self.plated, unit=self.unit), unit=self.unit)
        if self.plated:
            layer_stack.drill_pth.objects.append(hole)
        else:
            layer_stack.drill_npth.objects.append(hole)


@dataclass
class Via(Positioned):
    diameter: float
    hole: float

    def to_layer_stack(self, layer_stack):
        x, y, rotation = self.abs_pos

        aperture = CircleAperture(diameter=self.diameter, unit=self.unit)
        tool = ExcellonTool(diameter=self.hole, unit=self.unit)
        
        for (side, use), layer in layer_stack.copper_layers:
            layer.objects.append(Flash(x, y, aperture, unit=self.unit))

        layer_stack.drill_pth.objects.append(Flash(x, y, tool, unit=self.unit))


@dataclass
class Trace:
    width: float
    start: object = None
    end: object = None
    side: str = 'top'
    waypoints: [(float, float)] = field(default_factory=list)
    style: str = 'direct'
    orientation: [str] = tuple() # 'top' or 'bottom'
    roundover: float = 0
    unit: LengthUnit = MM
    parent: object = None

    DIRECT = 'direct'
    OBLIQUE = 'oblique'
    ORTHO = 'ortho'

    CW = 'cw'
    CCW = 'ccw'

    def _route(self, p1, p2, orientation):
        x1, y1 = p1
        x2, y2 = p2
        dx = x2-x1
        dy = y2-y1

        yield p1

        if self.style == 'direct' or \
                math.isclose(x1, x2, abs_tol=1e-6) or math.isclose(y1, y2, abs_tol=1e-6) or \
                (self.style == 'oblique' and math.isclose(dx, dy, abs_tol=1e-6)):
            return

        p = (abs(dy) > abs(dx)) == ((dx >= 0) == (dy >= 0))
        if self.style == 'oblique':
            if p == (orientation == 'cw'):
                if abs(dy) > abs(dx):
                    yield (0, sgn(dy)*(abs(dy)-abs(dx)))
                else:
                    yield (sgn(dx)*(abs(dx)-abs(dy)), 0)
            else:
                if abs(dy) > abs(dx):
                    yield (dx, sgn(dy)*abs(dx))
                else:
                    yield (sgn(dx)*abs(dy), dy)

        else: # self.style == 'ortho'
            if p == (orientation == 'cw'):
                if abs(dy) > abs(dx):
                    yield (0, dy)
                else:
                    yield (dx, 0)
            else:
                if abs(dy) > abs(dx):
                    yield (dx, 0)
                else:
                    yield (0, dy)

    @classmethod
    def _midpoint(kls, p1, p2):
        x1, y1 = p1
        x2, y2 = p2
        dx = x2 - x1
        dy = y2 - y1
        xm = x1 + dx / 2
        ym = y1 + dy / 2
        return (xm, ym)

    @classmethod
    def _point_on_line(kls, p1, p2, dist_from_p1):
        x1, y1 = p1
        x2, y2 = p2
        dx = x2 - x1
        dy = y2 - y1
        dist = math.dist(p1, p2)
        if math.isclose(dist, 0, abs_tol=1e-6):
            return p2
        xm = x1 + dx / dist * dist_from_p1
        ym = y1 + dy / dist * dist_from_p1
        return (xm, ym)

    @classmethod
    def _angle_between(kls, p1, p2, p3):
        x1, y1 = p1
        x2, y2 = p2
        x3, y3 = p3
        x1, y1 = x1 - x2, y1 - y2
        x3, y3 = x3 - x2, y3 - y2
        dot_product = x1*x3 + y1*y3
        l1 = math.hypot(x1, y1)
        l2 = math.hypot(x3, y3)
        norm = dot_product / l1 / l2
        return math.acos(min(1, max(-1, norm)))

    def _round_over(self, points, aperture):
        if math.isclose(self.roundover, 0, abs_tol=1e-6) or len(points) <= 2:
            for p1, p2 in zip(points[:-1], points[1:]):
                yield Line(*p1, *p2, aperture=aperture, unit=self.unit)
            return
        # here: len(points) >= 3

        line_b = Line(*points[0], *self._midpoint(points[0], points[1]), aperture=aperture, unit=self.unit)

        for p1, p2, p3 in zip(points[:-2], points[1:-1], points[2:]):
            x1, y1 = p1
            x2, y2 = p2
            x3, y3 = p3
            xa, ya = pa = self._midpoint(p1, p2)
            xb, yb = pb = self._midpoint(p2, p3)
            la = math.dist(pa, p2)
            lb = math.dist(p2, pb)

            alpha = self._angle_between(p1, p2, p3)
            tr = self.roundover/math.tan(alpha/2)
            t = min(la, lb, tr)
            r = t*math.tan(alpha/2)

            xs, ys = ps = self._point_on_line(p2, pa, t)
            xe, ye = pe = self._point_on_line(p2, pb, t)

            if math.isclose(t, la, abs_tol=1e-6):
                if not math.isclose(line_b.curve_length(), 0, abs_tol=1e-6):
                    yield line_b
                xs, ys = ps = pa
            else:
                yield Line(line_b.x1, line_b.y1, xs, ys, aperture=aperture, unit=self.unit)

            if math.isclose(t, lb, abs_tol=1e-6):
                xe, ye = pe = pb
            line_b = Line(*pe, *pb, aperture=aperture, unit=self.unit)

            if math.isclose(r, 0, abs_tol=1e-6):
                continue

            xc = -(y2 - ys) / t * r
            yc = +(x2 - xs) / t * r

            xsr = xs - x2
            ysr = ys - y2
            xer = xe - x2
            yer = ye - y2
            cross_product_z = xsr * yer - ysr * xer

            clockwise = cross_product_z > 0
            if clockwise:
                xc, yc = -xc, -yc
            
            yield Arc(*ps, *pe, xc, yc, clockwise, aperture=aperture, unit=self.unit)

        yield Line(line_b.x1, line_b.y1, x3, y3, aperture=aperture, unit=self.unit)
        
    def _to_graphic_objects(self):
        start, end = self.start, self.end

        if not isinstance(start, tuple):
            start = start.abs_pos
        if not isinstance(end, tuple):
            end = end.abs_pos

        aperture = CircleAperture(diameter=self.width, unit=self.unit)

        points_in = [start, *self.waypoints, end]

        points = []
        for p1, p2, orientation in zip_longest(points_in[:-1], points_in[1:], self.orientation):
            points.extend(self._route(p1, p2, orientation))
        points.append(p2)

        return self._round_over(points, aperture)

    def to_layer_stack(self, layer_stack, x, y, rotation):
        layer_stack[self.side, 'copper'].objects.extend(self._to_graphic_objects())

if __name__ == '__main__':
    from ..utils import setup_svg, Tag
    from ..newstroke import Newstroke

    def pd_obj(objs):
        objs = list(objs)
        yield f'M {objs[0].x1}, {objs[0].y1}'
        for obj in objs:
            if isinstance(obj, Line):
                yield f'L {obj.x2}, {obj.y2}'
            else:
                assert isinstance(obj, Arc)
                yield svg_arc(obj.p1, obj.p2, obj.center_relative, obj.clockwise)

    pd = lambda points: f'M {points[0][0]}, {points[0][1]} ' + ' '.join(f'L {x}, {y}' for x, y in points[1:])

    font = Newstroke()

    tags = []
    for n in range(0, 8*6):
        theta = 2*math.pi / (8*6) * n
        dx, dy = math.cos(theta), math.sin(theta)

        strokes = list(font.render(f'α={n/(8*6)*360}', size=0.2))
        xs = [x for st in strokes for x, _y in st]
        ys = [y for st in strokes for _x, y in st]
        min_x, min_y, max_x, max_y = min(xs), min(ys), max(xs), max(ys)

        xf = f'translate({n//6*1.1 + 0.1} {n%6*1.3 + 0.3}) scale(0.5 0.5) translate(1 1)'
        txf = f'{xf} translate(0 -1.2) translate({-(max_x-min_x)/2} {-max_y})'

        tags.append(Tag('circle', cx='0', cy='0', r='1',
                        fill='none', stroke='black', opacity='0.5', stroke_width='0.01',
                        transform=xf))
        tags.append(Tag('path',
                        fill='none',
                        stroke='black', opacity='0.5', stroke_width='0.02', stroke_linejoin='round', stroke_linecap='round',
                        transform=txf, d=' '.join(pd(points) for points in strokes)))

        for r in [0.0, 0.1, 0.2, 0.3]:
            tr = Trace(0.1, style='ortho', roundover=r, start=(0, 0), end=(dx, dy))
            #points_cw = list(tr._route((0, 0), (dx, dy), 'cw')) + [(dx, dy)]
            #points_ccw = list(tr._route((0, 0), (dx, dy), 'ccw')) + [(dx, dy)]
            tr.orientation = ['cw']
            objs_cw = tr._to_graphic_objects()
            tr.orientation = ['ccw']
            objs_ccw = tr._to_graphic_objects()

            tags.append(Tag('path',
                            fill='none',
                            stroke='red', stroke_width='0.01', stroke_linecap='round',
                            transform=xf, d=' '.join(pd_obj(objs_cw))))
            tags.append(Tag('path',
                            fill='none',
                            stroke='blue', stroke_width='0.01', stroke_linecap='round',
                            transform=xf, d=' '.join(pd_obj(objs_ccw))))

    print(setup_svg([Tag('g', tags, transform='scale(20 20)')], [(0, 0), (20*10*1.1 + 0.1, 20*10*1.3 + 0.1)]))