1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2022 Jan Götte <code@jaseg.de>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import math
from dataclasses import dataclass, replace, field, fields, InitVar
from .aperture_macros.parse import GenericMacros
from .utils import MM, Inch
from . import graphic_primitives as gp
def _flash_hole(self, x, y, unit=None, polarity_dark=True):
if getattr(self, 'hole_rect_h', None) is not None:
w, h = self.unit.convert_to(unit, self.hole_dia), self.unit.convert_to(unit, self.hole_rect_h)
return [*self._primitives(x, y, unit, polarity_dark),
gp.Rectangle(x, y, w, h, rotation=self.rotation, polarity_dark=(not polarity_dark))]
elif self.hole_dia is not None:
return [*self._primitives(x, y, unit, polarity_dark),
gp.Circle(x, y, self.unit.convert_to(unit, self.hole_dia/2), polarity_dark=(not polarity_dark))]
else:
return self._primitives(x, y, unit, polarity_dark)
def _strip_right(*args):
args = list(args)
while args and args[-1] is None:
args.pop()
return args
def _none_close(a, b):
if a is None and b is None:
return True
elif a is not None and b is not None:
return math.isclose(a, b)
else:
return False
class Length:
""" Marker indicating that a dataclass field of an :py:class:`.Aperture` contains a physical length or coordinate
measured in the :py:class:`.Aperture`'s native unit from :py:attr:`.Aperture.unit`.
"""
def __init__(self, obj_type):
self.type = obj_type
@dataclass
class Aperture:
""" Base class for all apertures. """
# hackety hack: Work around python < 3.10 not having dataclasses.KW_ONLY.
#
# For details, refer to graphic_objects.py
def __init_subclass__(cls):
#: :py:class:`gerbonara.utils.LengthUnit` used for all length fields of this aperture.
cls.unit = None
#: GerberX2 attributes of this aperture. Note that this will only contain aperture attributes, not file attributes.
#: File attributes are stored in the :py:attr:`~.GerberFile.attrs` of the :py:class:`.GerberFile`.
cls.attrs = field(default_factory=dict)
#: Aperture index this aperture had when it was read from the Gerber file. This field is purely informational since
#: apertures are de-duplicated and re-numbered when writing a Gerber file. For `D10`, this field would be `10`. When
#: you programmatically create a new aperture, you do not have to set this.
cls.original_number = None
d = {'unit': str, 'attrs': dict, 'original_number': int}
if hasattr(cls, '__annotations__'):
cls.__annotations__.update(d)
else:
cls.__annotations__ = d
@property
def hole_shape(self):
""" Get shape of hole based on :py:attr:`hole_dia` and :py:attr:`hole_rect_h`: "rect" or "circle" or None. """
if getattr(self, 'hole_rect_h') is not None:
return 'rect'
elif getattr(self, 'hole_dia') is not None:
return 'circle'
else:
return None
def _params(self, unit=None):
out = []
for f in fields(self):
if f.kw_only:
continue
val = getattr(self, f.name)
if isinstance(f.type, Length):
val = self.unit.convert_to(unit, val)
out.append(val)
return out
def flash(self, x, y, unit=None, polarity_dark=True):
""" Render this aperture into a ``list`` of :py:class:`.GraphicPrimitive` instances in the given unit. If no
unit is given, use this aperture's local unit.
:param float x: X coordinate of center of flash.
:param float y: Y coordinate of center of flash.
:param LengthUnit unit: Physical length unit to use for the returned primitives.
:param bool polarity_dark: Polarity of this flash. ``True`` renders this aperture as usual. ``False`` flips the polarity of all primitives.
:returns: Rendered graphic primitivees.
:rtype: list(:py:class:`.GraphicPrimitive`)
"""
return self._primitives(x, y, unit, polarity_dark)
def equivalent_width(self, unit=None):
""" Get the width of a line interpolated using this aperture in the given :py:class:`~.LengthUnit`.
:rtype: float
"""
raise ValueError('Non-circular aperture used in interpolation statement, line width is not properly defined.')
def to_gerber(self, settings=None):
""" Return the Gerber aperture definition for this aperture using the given :py:class:`.FileSettings`.
:rtype: str
"""
# Hack: The standard aperture shapes C, R, O do not have a rotation parameter. To make this API easier to use,
# we emulate this parameter. Our circle, rectangle and oblong classes below have a rotation parameter. Only at
# export time during to_gerber, this parameter is evaluated.
unit = settings.unit if settings else None
actual_inst = self._rotated()
params = 'X'.join(f'{float(par):.4}' for par in actual_inst._params(unit) if par is not None)
if params:
return f'{actual_inst._gerber_shape_code},{params}'
else:
return actual_inst._gerber_shape_code
def to_macro(self):
""" Convert this :py:class:`.Aperture` into an :py:class:`.ApertureMacro` inside an
:py:class:`.ApertureMacroInstance`.
"""
raise NotImplementedError()
def __eq__(self, other):
""" Compare two apertures. Apertures are compared based on their Gerber representation. Two apertures are
considered equal if their Gerber aperture definitions are identical.
"""
# We need to choose some unit here.
return hasattr(other, 'to_gerber') and self.to_gerber(MM) == other.to_gerber(MM)
def _rotate_hole_90(self):
if self.hole_rect_h is None:
return {'hole_dia': self.hole_dia, 'hole_rect_h': None}
else:
return {'hole_dia': self.hole_rect_h, 'hole_rect_h': self.hole_dia}
@dataclass(unsafe_hash=True)
class ExcellonTool(Aperture):
""" Special Aperture_ subclass for use in :py:class:`.ExcellonFile`. Similar to :py:class:`.CircleAperture`, but
does not have :py:attr:`.CircleAperture.hole_dia` or :py:attr:`.CircleAperture.hole_rect_h`, and has the additional
:py:attr:`plated` attribute.
"""
_gerber_shape_code = 'C'
_human_readable_shape = 'drill'
#: float with diameter of this tool in :py:attr:`unit` units.
diameter : Length(float)
#: bool or ``None`` for "unknown", indicating whether this tool creates plated (``True``) or non-plated (``False``)
#: holes.
plated : bool = None
def _primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Circle(x, y, self.unit.convert_to(unit, self.diameter/2), polarity_dark=polarity_dark) ]
def to_xnc(self, settings):
return 'C' + settings.write_excellon_value(self.diameter, self.unit)
def __eq__(self, other):
""" Compare two :py:class:`.ExcellonTool` instances. They are considered equal if their diameter and plating
match.
"""
if not isinstance(other, ExcellonTool):
return False
if not self.plated == other.plated:
return False
return _none_close(self.diameter, self.unit(other.diameter, other.unit))
def __str__(self):
plated = '' if self.plated is None else (' plated' if self.plated else ' non-plated')
return f'<Excellon Tool d={self.diameter:.3f}{plated} [{self.unit}]>'
def equivalent_width(self, unit=MM):
return unit(self.diameter, self.unit)
# Internal use, for layer dilation.
def dilated(self, offset, unit=MM):
offset = unit(offset, self.unit)
return replace(self, diameter=self.diameter+2*offset)
def _rotated(self):
return self
def to_macro(self):
return ApertureMacroInstance(GenericMacros.circle, self._params(unit=MM))
def _params(self, unit=None):
return [self.unit.convert_to(unit, self.diameter)]
@dataclass
class CircleAperture(Aperture):
""" Besides flashing circles or rings, CircleApertures are used to set the width of a
:py:class:`~.graphic_objects.Line` or :py:class:`~.graphic_objects.Arc`.
"""
_gerber_shape_code = 'C'
_human_readable_shape = 'circle'
#: float with diameter of the circle in :py:attr:`unit` units.
diameter : Length(float)
#: float with the hole diameter of this aperture in :py:attr:`unit` units. ``0`` for no hole.
hole_dia : Length(float) = None
#: float or None. If not None, specifies a rectangular hole of size `hole_dia * hole_rect_h` instead of a round hole.
hole_rect_h : Length(float) = None
# float with radians. This is only used for rectangular holes (as circles are rotationally symmetric).
rotation : float = 0
def _primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Circle(x, y, self.unit.convert_to(unit, self.diameter/2), polarity_dark=polarity_dark) ]
def __str__(self):
return f'<circle aperture d={self.diameter:.3} [{self.unit}]>'
flash = _flash_hole
def equivalent_width(self, unit=None):
return self.unit.convert_to(unit, self.diameter)
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, diameter=self.diameter+2*offset, hole_dia=None, hole_rect_h=None)
def _rotated(self):
if math.isclose(self.rotation % (2*math.pi), 0) or self.hole_rect_h is None:
return self
else:
return self.to_macro(self.rotation)
def to_macro(self):
return ApertureMacroInstance(GenericMacros.circle, self._params(unit=MM))
def _params(self, unit=None):
return _strip_right(
self.unit.convert_to(unit, self.diameter),
self.unit.convert_to(unit, self.hole_dia),
self.unit.convert_to(unit, self.hole_rect_h))
@dataclass
class RectangleAperture(Aperture):
_gerber_shape_code = 'R'
_human_readable_shape = 'rect'
#: float with the width of the rectangle in :py:attr:`unit` units.
w : Length(float)
#: float with the height of the rectangle in :py:attr:`unit` units.
h : Length(float)
#: float with the hole diameter of this aperture in :py:attr:`unit` units. ``0`` for no hole.
hole_dia : Length(float) = None
#: float or None. If not None, specifies a rectangular hole of size `hole_dia * hole_rect_h` instead of a round hole.
hole_rect_h : Length(float) = None
# Rotation in radians. This rotates both the aperture and the rectangular hole if it has one.
rotation : float = 0 # radians
def _primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Rectangle(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
return f'<rect aperture {self.w:.3}x{self.h:.3} [{self.unit}]>'
flash = _flash_hole
def equivalent_width(self, unit=None):
return self.unit.convert_to(unit, math.sqrt(self.w**2 + self.h**2))
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None)
def _rotated(self):
if math.isclose(self.rotation % math.pi, 0):
return self
elif math.isclose(self.rotation % math.pi, math.pi/2):
return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0)
else: # odd angle
return self.to_macro()
def to_macro(self):
return ApertureMacroInstance(GenericMacros.rect,
[MM(self.w, self.unit),
MM(self.h, self.unit),
MM(self.hole_dia, self.unit) or 0,
MM(self.hole_rect_h, self.unit) or 0,
self.rotation])
def _params(self, unit=None):
return _strip_right(
self.unit.convert_to(unit, self.w),
self.unit.convert_to(unit, self.h),
self.unit.convert_to(unit, self.hole_dia),
self.unit.convert_to(unit, self.hole_rect_h))
@dataclass
class ObroundAperture(Aperture):
""" Aperture whose shape is the convex hull of two circles of equal radii.
Obrounds are specified through width and height of their bounding rectangle.. The smaller one of these will be the
diameter of the obround's ends. If :py:attr:`w` is larger, the result will be a landscape obround. If :py:attr:`h`
is larger, it will be a portrait obround.
"""
_gerber_shape_code = 'O'
_human_readable_shape = 'obround'
#: float with the width of the bounding rectangle of this obround in :py:attr:`unit` units.
w : Length(float)
#: float with the height of the bounding rectangle of this obround in :py:attr:`unit` units.
h : Length(float)
#: float with the hole diameter of this aperture in :py:attr:`unit` units. ``0`` for no hole.
hole_dia : Length(float) = None
#: float or None. If not None, specifies a rectangular hole of size `hole_dia * hole_rect_h` instead of a round hole.
hole_rect_h : Length(float) = None
#: Rotation in radians. This rotates both the aperture and the rectangular hole if it has one.
rotation : float = 0
def _primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.Line.from_obround(x, y, self.unit.convert_to(unit, self.w), self.unit.convert_to(unit, self.h),
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
return f'<obround aperture {self.w:.3}x{self.h:.3} [{self.unit}]>'
flash = _flash_hole
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None)
def _rotated(self):
if math.isclose(self.rotation % math.pi, 0):
return self
elif math.isclose(self.rotation % math.pi, math.pi/2):
return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0)
else:
return self.to_macro()
def to_macro(self):
# generic macro only supports w > h so flip x/y if h > w
inst = self if self.w > self.h else replace(self, w=self.h, h=self.w, **_rotate_hole_90(self), rotation=self.rotation-90)
return ApertureMacroInstance(GenericMacros.obround,
[MM(inst.w, self.unit),
MM(ints.h, self.unit),
MM(inst.hole_dia, self.unit),
MM(inst.hole_rect_h, self.unit),
inst.rotation])
def _params(self, unit=None):
return _strip_right(
self.unit.convert_to(unit, self.w),
self.unit.convert_to(unit, self.h),
self.unit.convert_to(unit, self.hole_dia),
self.unit.convert_to(unit, self.hole_rect_h))
@dataclass
class PolygonAperture(Aperture):
""" Aperture whose shape is a regular n-sided polygon (e.g. pentagon, hexagon etc.). Note that this only supports
round holes.
"""
_gerber_shape_code = 'P'
#: Diameter of circumscribing circle, i.e. the circle that all the polygon's corners lie on. In
#: :py:attr:`unit` units.
diameter : Length(float)
#: Number of corners of this polygon. Three for a triangle, four for a square, five for a pentagon etc.
n_vertices : int
#: Rotation in radians.
rotation : float = 0
#: float with the hole diameter of this aperture in :py:attr:`unit` units. ``0`` for no hole.
hole_dia : Length(float) = None
def __post_init__(self):
self.n_vertices = int(self.n_vertices)
def _primitives(self, x, y, unit=None, polarity_dark=True):
return [ gp.ArcPoly.from_regular_polygon(x, y, self.unit.convert_to(unit, self.diameter)/2, self.n_vertices,
rotation=self.rotation, polarity_dark=polarity_dark) ]
def __str__(self):
return f'<{self.n_vertices}-gon aperture d={self.diameter:.3} [{self.unit}]>'
def dilated(self, offset, unit=MM):
offset = self.unit(offset, unit)
return replace(self, diameter=self.diameter+2*offset, hole_dia=None)
flash = _flash_hole
def _rotated(self):
return self
def to_macro(self):
return ApertureMacroInstance(GenericMacros.polygon, self._params(MM))
def _params(self, unit=None):
rotation = self.rotation % (2*math.pi / self.n_vertices) if self.rotation is not None else None
if self.hole_dia is not None:
return self.unit.convert_to(unit, self.diameter), self.n_vertices, rotation, self.unit.convert_to(unit, self.hole_dia)
elif rotation is not None and not math.isclose(rotation, 0):
return self.unit.convert_to(unit, self.diameter), self.n_vertices, rotation
else:
return self.unit.convert_to(unit, self.diameter), self.n_vertices
@dataclass
class ApertureMacroInstance(Aperture):
""" One instance of an aperture macro. An aperture macro defined with an ``AM`` statement can be instantiated by
multiple ``AD`` aperture definition statements using different parameters. An :py:class:`.ApertureMacroInstance` is
one such binding of a macro to a particular set of parameters. Note that you still need an
:py:class:`.ApertureMacroInstance` even if your :py:class:`.ApertureMacro` has no parameters since an
:py:class:`.ApertureMacro` is not an :py:class:`.Aperture` by itself.
"""
#: The :py:class:`.ApertureMacro` bound in this instance
macro : object
#: The parameters to the :py:class:`.ApertureMacro`. All elements should be floats or ints. The first item in the
#: list is parameter ``$1``, the second is ``$2`` etc.
parameters : list
#: Aperture rotation in radians. When saving, a copy of the :py:class:`.ApertureMacro` is re-written with this
#: rotation.
rotation : float = 0
@property
def _gerber_shape_code(self):
return self.macro.name
def _primitives(self, x, y, unit=None, polarity_dark=True):
out = list(self.macro.to_graphic_primitives(
offset=(x, y), rotation=self.rotation,
parameters=self.parameters, unit=unit, polarity_dark=polarity_dark))
return out
def dilated(self, offset, unit=MM):
return replace(self, macro=self.macro.dilated(offset, unit))
def _rotated(self):
if math.isclose(self.rotation % (2*math.pi), 0):
return self
else:
return self.to_macro()
def to_macro(self):
return replace(self, macro=self.macro.rotated(self.rotation), rotation=0)
def __eq__(self, other):
return hasattr(other, 'macro') and self.macro == other.macro and \
hasattr(other, 'parameters') and self.parameters == other.parameters and \
hasattr(other, 'rotation') and self.rotation == other.rotation
def _params(self, unit=None):
# We ignore "unit" here as we convert the actual macro, not this instantiation.
# We do this because here we do not have information about which parameter has which physical units.
return tuple(self.parameters)
|