summaryrefslogtreecommitdiff
path: root/gerbonara/aperture_macros/primitive.py
blob: 25c9bd1c52e4fecfd117f0b9e30b54662e46d7cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
# Copyright 2022 Jan Sebastian Götte <gerbonara@jaseg.de>

import warnings
import contextlib
import math

from .expression import Expression, UnitExpression, ConstantExpression, expr

from .. import graphic_primitives as gp
from .. import graphic_objects as go
from ..utils import rotate_point


def point_distance(a, b):
    x1, y1 = a
    x2, y2 = b
    return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)


# we make our own here instead of using math.degrees to make sure this works with expressions, too.
def deg_to_rad(a):
    return a * (math.pi / 180)


def rad_to_deg(a):
    return a * (180 / math.pi)


class Primitive:
    def __init__(self, unit, args):
        self.unit = unit

        if len(args) > len(type(self).__annotations__):
            raise ValueError(f'Too many arguments ({len(args)}) for aperture macro primitive {self.code} ({type(self)})')

        for arg, (name, fieldtype) in zip(args, type(self).__annotations__.items()):
            arg = expr(arg) # convert int/float to Expression object

            if fieldtype == UnitExpression:
                setattr(self, name, UnitExpression(arg, unit))
            else:
                setattr(self, name, arg)

        for name in type(self).__annotations__:
            if not hasattr(self, name):
                raise ValueError(f'Too few arguments ({len(args)}) for aperture macro primitive {self.code} ({type(self)})')

    def to_gerber(self, unit=None):
        return f'{self.code},' + ','.join(
                getattr(self, name).to_gerber(unit) for name in type(self).__annotations__)

    def __str__(self):
        attrs = ','.join(str(getattr(self, name)).strip('<>') for name in type(self).__annotations__)
        return f'<{type(self).__name__} {attrs}>'

    def __repr__(self):
        return str(self)

    class Calculator:
        def __init__(self, instance, variable_binding={}, unit=None):
            self.instance = instance
            self.variable_binding = variable_binding
            self.unit = unit

        def __enter__(self):
            return self

        def __exit__(self, _type, _value, _traceback):
            pass

        def __getattr__(self, name):
            return getattr(self.instance, name).calculate(self.variable_binding, self.unit)

        def __call__(self, expr):
            return expr.calculate(self.variable_binding, self.unit)


class Circle(Primitive):
    code = 1
    exposure : Expression
    diameter : UnitExpression
    # center x/y
    x : UnitExpression
    y : UnitExpression
    rotation : Expression = None

    def __init__(self, unit, args):
        super().__init__(unit, args)
        if self.rotation is None:
            self.rotation = ConstantExpression(0)

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            x, y = rotate_point(calc.x, calc.y, deg_to_rad(calc.rotation) + rotation, 0, 0)
            x, y = x+offset[0], y+offset[1]
            return [ gp.Circle(x, y, calc.diameter/2, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilate(self, offset, unit):
        self.diameter += UnitExpression(offset, unit)

    def scale(self, scale):
        self.x *= UnitExpression(scale)
        self.y *= UnitExpression(scale)
        self.diameter *= UnitExpression(scale)


class VectorLine(Primitive):
    code = 20
    exposure : Expression
    width : UnitExpression
    start_x : UnitExpression
    start_y : UnitExpression
    end_x : UnitExpression
    end_y : UnitExpression
    rotation : Expression = None

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            center_x = (calc.end_x + calc.start_x) / 2
            center_y = (calc.end_y + calc.start_y) / 2
            delta_x = calc.end_x - calc.start_x
            delta_y = calc.end_y - calc.start_y
            length = point_distance((calc.start_x, calc.start_y), (calc.end_x, calc.end_y))

            center_x, center_y = rotate_point(center_x, center_y, deg_to_rad(calc.rotation) + rotation, 0, 0)
            center_x, center_y = center_x+offset[0], center_y+offset[1]
            rotation += deg_to_rad(calc.rotation) + math.atan2(delta_y, delta_x)

            return [ gp.Rectangle(center_x, center_y, length, calc.width, rotation=rotation,
                        polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilate(self, offset, unit):
        self.width += UnitExpression(2*offset, unit)

    def scale(self, scale):
        self.start_x *= UnitExpression(scale)
        self.start_y *= UnitExpression(scale)
        self.end_x *= UnitExpression(scale)
        self.end_y *= UnitExpression(scale)


class CenterLine(Primitive):
    code = 21
    exposure : Expression
    width : UnitExpression
    height : UnitExpression
    # center x/y
    x : UnitExpression
    y : UnitExpression
    rotation : Expression

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
            x, y = x+offset[0], y+offset[1]
            w, h = calc.width, calc.height

            return [ gp.Rectangle(x, y, w, h, rotation, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilate(self, offset, unit):
        self.width += UnitExpression(2*offset, unit)

    def scale(self, scale):
        self.width *= UnitExpression(scale)
        self.height *= UnitExpression(scale)
        self.x *= UnitExpression(scale)
        self.y *= UnitExpression(scale)
            

class Polygon(Primitive):
    code = 5
    exposure : Expression
    n_vertices : Expression
    # center x/y
    x : UnitExpression
    y : UnitExpression
    diameter : UnitExpression
    rotation : Expression

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            x, y = rotate_point(calc.x, calc.y, rotation, 0, 0)
            x, y = x+offset[0], y+offset[1]
            return [ gp.ArcPoly.from_regular_polygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
                        polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilate(self, offset, unit):
        self.diameter += UnitExpression(2*offset, unit)

    def scale(self, scale):
        self.diameter *= UnitExpression(scale)
        self.x *= UnitExpression(scale)
        self.y *= UnitExpression(scale)
            

class Thermal(Primitive):
    code = 7
    exposure : Expression
    # center x/y
    x : UnitExpression
    y : UnitExpression
    d_outer : UnitExpression
    d_inner : UnitExpression
    gap_w : UnitExpression
    rotation : Expression

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            x, y = rotate_point(calc.x, calc.y, rotation, 0, 0)
            x, y = x+offset[0], y+offset[1]

            dark = (bool(calc.exposure) == polarity_dark)

            return [
                    gp.Circle(x, y, calc.d_outer/2, polarity_dark=dark),
                    gp.Circle(x, y, calc.d_inner/2, polarity_dark=not dark),
                    gp.Rectangle(x, y, d_outer, gap_w, rotation=rotation, polarity_dark=not dark),
                    gp.Rectangle(x, y, gap_w, d_outer, rotation=rotation, polarity_dark=not dark),
                    ]

    def dilate(self, offset, unit):
        # I'd rather print a warning and produce graphically slightly incorrect output in these few cases here than
        # producing macros that may evaluate to primitives with negative values.
        warnings.warn('Attempted dilation of macro aperture thermal primitive. This is not supported.')

    def scale(self, scale):
        self.d_outer *= UnitExpression(scale)
        self.d_inner *= UnitExpression(scale)
        self.gap_w *= UnitExpression(scale)
        self.x *= UnitExpression(scale)
        self.y *= UnitExpression(scale)


class Outline(Primitive):
    code = 4

    def __init__(self, unit, args):
        if len(args) < 10:
            raise ValueError(f'Invalid aperture macro outline primitive, not enough parameters ({len(args)}).')
        if len(args) > 5004:
            raise ValueError(f'Invalid aperture macro outline primitive, too many points ({len(args)//2-2}).')

        self.exposure = expr(args.pop(0))

        # length arg must not contain variables (that would not make sense)
        length_arg = (args.pop(0) * ConstantExpression(1)).calculate()

        if length_arg != len(args)//2-1:
            raise ValueError(f'Invalid aperture macro outline primitive, given size {length_arg} does not match length of coordinate list({len(args)//2-1}).')

        if len(args) % 2 == 1:
            self.rotation = expr(args.pop())
        else:
            self.rotation = ConstantExpression(0.0)

        if args[0] != args[-2] or args[1] != args[-1]:
            raise ValueError(f'Invalid aperture macro outline primitive, polygon is not closed {args[2:4], args[-3:-1]}')

        self.coords = [(UnitExpression(x, unit), UnitExpression(y, unit)) for x, y in zip(args[0::2], args[1::2])]

    def __str__(self):
        return f'<Outline {len(self.coords)} points>'

    def to_gerber(self, unit=None):
        coords = ','.join(coord.to_gerber(unit) for xy in self.coords for coord in xy)
        return f'{self.code},{self.exposure.to_gerber()},{len(self.coords)-1},{coords},{self.rotation.to_gerber()}'

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            bound_coords = [ rotate_point(calc(x), calc(y), rotation, 0, 0) for x, y in self.coords ]
            bound_coords = [ (x+offset[0], y+offset[1]) for x, y in bound_coords ]
            bound_radii = [None] * len(bound_coords)
            return [gp.ArcPoly(bound_coords, bound_radii, polarity_dark=(bool(calc.exposure) == polarity_dark))]

    def dilate(self, offset, unit):
        # we would need a whole polygon offset/clipping library here
        warnings.warn('Attempted dilation of macro aperture outline primitive. This is not supported.')

    def scale(self, scale):
        self.coords = [(x*UnitExpression(scale), y*UnitExpression(scale)) for x, y in self.coords]


class Comment:
    code = 0

    def __init__(self, comment):
        self.comment = comment

    def to_gerber(self, unit=None):
        return f'0 {self.comment}'

    def scale(self, scale):
        pass


PRIMITIVE_CLASSES = {
    **{cls.code: cls for cls in [
        Comment,
        Circle,
        VectorLine,
        CenterLine,
        Outline,
        Polygon,
        Thermal,
    ]},
    # alternative codes
    2: VectorLine,
}