1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
# Copyright 2022 Jan Götte <gerbonara@jaseg.de>
import warnings
import contextlib
import math
from .expression import Expression, UnitExpression, ConstantExpression, expr
from .. import graphic_primitives as gp
def point_distance(a, b):
x1, y1 = a
x2, y2 = b
return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def deg_to_rad(a):
return (a / 180) * math.pi
class Primitive:
def __init__(self, unit, args):
self.unit = unit
if len(args) > len(type(self).__annotations__):
raise ValueError(f'Too many arguments ({len(args)}) for aperture macro primitive {self.code} ({type(self)})')
for arg, (name, fieldtype) in zip(args, type(self).__annotations__.items()):
arg = expr(arg) # convert int/float to Expression object
if fieldtype == UnitExpression:
setattr(self, name, UnitExpression(arg, unit))
else:
setattr(self, name, arg)
for name in type(self).__annotations__:
if not hasattr(self, name):
raise ValueError(f'Too few arguments ({len(args)}) for aperture macro primitive {self.code} ({type(self)})')
def to_gerber(self, unit=None):
return f'{self.code},' + ','.join(
getattr(self, name).to_gerber(unit) for name in type(self).__annotations__)
def __str__(self):
attrs = ','.join(str(getattr(self, name)).strip('<>') for name in type(self).__annotations__)
return f'<{type(self).__name__} {attrs}>'
def __repr__(self):
return str(self)
class Calculator:
def __init__(self, instance, variable_binding={}, unit=None):
self.instance = instance
self.variable_binding = variable_binding
self.unit = unit
def __enter__(self):
return self
def __exit__(self, _type, _value, _traceback):
pass
def __getattr__(self, name):
return getattr(self.instance, name).calculate(self.variable_binding, self.unit)
def __call__(self, expr):
return expr.calculate(self.variable_binding, self.unit)
class Circle(Primitive):
code = 1
exposure : Expression
diameter : UnitExpression
# center x/y
x : UnitExpression
y : UnitExpression
rotation : Expression = None
def __init__(self, unit, args):
super().__init__(unit, args)
if self.rotation is None:
self.rotation = ConstantExpression(0)
def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
with self.Calculator(self, variable_binding, unit) as calc:
x, y = gp.rotate_point(calc.x, calc.y, deg_to_rad(calc.rotation) + rotation, 0, 0)
x, y = x+offset[0], y+offset[1]
return [ gp.Circle(x, y, calc.diameter/2, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
def dilate(self, offset, unit):
self.diameter += UnitExpression(offset, unit)
class VectorLine(Primitive):
code = 20
exposure : Expression
width : UnitExpression
start_x : UnitExpression
start_y : UnitExpression
end_x : UnitExpression
end_y : UnitExpression
rotation : Expression
def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
with self.Calculator(self, variable_binding, unit) as calc:
center_x = (calc.end_x + calc.start_x) / 2
center_y = (calc.end_y + calc.start_y) / 2
delta_x = calc.end_x - calc.start_x
delta_y = calc.end_y - calc.start_y
length = point_distance((calc.start_x, calc.start_y), (calc.end_x, calc.end_y))
center_x, center_y = center_x+offset[0], center_y+offset[1]
rotation += deg_to_rad(calc.rotation) + math.atan2(delta_y, delta_x)
return [ gp.Rectangle(center_x, center_y, length, calc.width, rotation=rotation,
polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
def dilate(self, offset, unit):
self.width += UnitExpression(2*offset, unit)
class CenterLine(Primitive):
code = 21
exposure : Expression
width : UnitExpression
height : UnitExpression
# center x/y
x : UnitExpression
y : UnitExpression
rotation : Expression
def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
with self.Calculator(self, variable_binding, unit) as calc:
rotation += deg_to_rad(calc.rotation)
x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
x, y = x+offset[0], y+offset[1]
w, h = calc.width, calc.height
return [ gp.Rectangle(x, y, w, h, rotation, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
def dilate(self, offset, unit):
self.width += UnitExpression(2*offset, unit)
class Polygon(Primitive):
code = 5
exposure : Expression
n_vertices : Expression
# center x/y
x : UnitExpression
y : UnitExpression
diameter : UnitExpression
rotation : Expression
def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
with self.Calculator(self, variable_binding, unit) as calc:
rotation += deg_to_rad(calc.rotation)
x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
x, y = x+offset[0], y+offset[1]
return [ gp.ArcPoly.from_regular_polygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
polarity_dark=(bool(calc.exposure) == polarity_dark)) ]
def dilate(self, offset, unit):
self.diameter += UnitExpression(2*offset, unit)
class Thermal(Primitive):
code = 7
exposure : Expression
# center x/y
x : UnitExpression
y : UnitExpression
d_outer : UnitExpression
d_inner : UnitExpression
gap_w : UnitExpression
rotation : Expression
def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
with self.Calculator(self, variable_binding, unit) as calc:
rotation += deg_to_rad(calc.rotation)
x, y = gp.rotate_point(calc.x, calc.y, rotation, 0, 0)
x, y = x+offset[0], y+offset[1]
dark = (bool(calc.exposure) == polarity_dark)
return [
gp.Circle(x, y, calc.d_outer/2, polarity_dark=dark),
gp.Circle(x, y, calc.d_inner/2, polarity_dark=not dark),
gp.Rectangle(x, y, d_outer, gap_w, rotation=rotation, polarity_dark=not dark),
gp.Rectangle(x, y, gap_w, d_outer, rotation=rotation, polarity_dark=not dark),
]
def dilate(self, offset, unit):
# I'd rather print a warning and produce graphically slightly incorrect output in these few cases here than
# producing macros that may evaluate to primitives with negative values.
warnings.warn('Attempted dilation of macro aperture thermal primitive. This is not supported.')
class Outline(Primitive):
code = 4
def __init__(self, unit, args):
if len(args) < 11:
raise ValueError(f'Invalid aperture macro outline primitive, not enough parameters ({len(args)}).')
if len(args) > 5004:
raise ValueError(f'Invalid aperture macro outline primitive, too many points ({len(args)//2-2}).')
self.exposure = args.pop(0)
# length arg must not contain variables (that would not make sense)
length_arg = args.pop(0).calculate()
if length_arg != len(args)//2-1:
raise ValueError(f'Invalid aperture macro outline primitive, given size {length_arg} does not match length of coordinate list({len(args)//2-1}).')
if len(args) % 2 == 1:
self.rotation = args.pop()
else:
self.rotation = ConstantExpression(0.0)
if args[0] != args[-2] or args[1] != args[-1]:
raise ValueError(f'Invalid aperture macro outline primitive, polygon is not closed {args[2:4], args[-3:-1]}')
self.coords = [(UnitExpression(x, unit), UnitExpression(y, unit)) for x, y in zip(args[0::2], args[1::2])]
def __str__(self):
return f'<Outline {len(self.coords)} points>'
def to_gerber(self, unit=None):
coords = ','.join(coord.to_gerber(unit) for xy in self.coords for coord in xy)
return f'{self.code},{self.exposure.to_gerber()},{len(self.coords)-1},{coords},{self.rotation.to_gerber()}'
def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
with self.Calculator(self, variable_binding, unit) as calc:
rotation += deg_to_rad(calc.rotation)
bound_coords = [ gp.rotate_point(calc(x), calc(y), rotation, 0, 0) for x, y in self.coords ]
bound_coords = [ (x+offset[0], y+offset[1]) for x, y in bound_coords ]
bound_radii = [None] * len(bound_coords)
return [gp.ArcPoly(bound_coords, bound_radii, polarity_dark=(bool(calc.exposure) == polarity_dark))]
def dilate(self, offset, unit):
# we would need a whole polygon offset/clipping library here
warnings.warn('Attempted dilation of macro aperture outline primitive. This is not supported.')
class Comment:
code = 0
def __init__(self, comment):
self.comment = comment
def to_gerber(self, unit=None):
return f'0 {self.comment}'
PRIMITIVE_CLASSES = {
**{cls.code: cls for cls in [
Comment,
Circle,
VectorLine,
CenterLine,
Outline,
Polygon,
Thermal,
]},
# alternative codes
2: VectorLine,
}
|