summaryrefslogtreecommitdiff
path: root/gerbonara/aperture_macros/primitive.py
blob: 38bd266a00279761dc6411d4503763b50dcb2df0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2019 Hiroshi Murayama <opiopan@gmail.com>
# Copyright 2022 Jan Sebastian Götte <gerbonara@jaseg.de>

import warnings
import contextlib
import math
from dataclasses import dataclass, fields

from .expression import Expression, UnitExpression, ConstantExpression, expr

from .. import graphic_primitives as gp
from .. import graphic_objects as go
from ..utils import rotate_point, LengthUnit, MM


def point_distance(a, b):
    x1, y1 = a
    x2, y2 = b
    return math.sqrt((x2 - x1)**2 + (y2 - y1)**2)


# we make our own here instead of using math.degrees to make sure this works with expressions, too.
def deg_to_rad(a):
    return a * (math.pi / 180)


def rad_to_deg(a):
    return a * (180 / math.pi)


@dataclass(frozen=True, slots=True)
class Primitive:
    unit: LengthUnit
    exposure : Expression

    def __post_init__(self):
        for field in fields(self):
            if field.type == UnitExpression:
                value = getattr(self, field.name)
                if not isinstance(value, UnitExpression):
                    value = UnitExpression(expr(value), self.unit)
                object.__setattr__(self, field.name, value)
            elif field.type == Expression:
                object.__setattr__(self, field.name, expr(getattr(self, field.name)))

    def to_gerber(self, unit=None):
        return f'{self.code},' + ','.join(
                getattr(self, name).to_gerber(unit) for name in type(self).__annotations__)

    def __str__(self):
        attrs = ','.join(str(getattr(self, name)).strip('<>') for name in type(self).__annotations__)
        return f'<{type(self).__name__} {attrs}>'

    def __repr__(self):
        return str(self)

    @classmethod
    def from_arglist(kls, arglist):
        return kls(*arglist)

    class Calculator:
        def __init__(self, instance, variable_binding={}, unit=None):
            self.instance = instance
            self.variable_binding = variable_binding
            self.unit = unit

        def __enter__(self):
            return self

        def __exit__(self, _type, _value, _traceback):
            pass

        def __getattr__(self, name):
            return getattr(self.instance, name).calculate(self.variable_binding, self.unit)

        def __call__(self, expr):
            return expr.calculate(self.variable_binding, self.unit)


@dataclass(frozen=True, slots=True)
class Circle(Primitive):
    code = 1
    diameter : UnitExpression
    # center x/y
    x : UnitExpression
    y : UnitExpression
    rotation : Expression = 0

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            x, y = rotate_point(calc.x, calc.y, -(deg_to_rad(calc.rotation) + rotation), 0, 0)
            x, y = x+offset[0], y+offset[1]
            return [ gp.Circle(x, y, calc.diameter/2, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilated(self, offset, unit):
        return replace(self, diameter=self.diameter + UnitExpression(offset, unit))

    def scaled(self, scale):
        return replace(self, x=self.x * UnitExpression(scale), y=self.y * UnitExpression(scale),
                       diameter=self.diameter * UnitExpression(scale))


@dataclass(frozen=True, slots=True)
class VectorLine(Primitive):
    code = 20
    width : UnitExpression
    start_x : UnitExpression
    start_y : UnitExpression
    end_x : UnitExpression
    end_y : UnitExpression
    rotation : Expression = 0

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            center_x = (calc.end_x + calc.start_x) / 2
            center_y = (calc.end_y + calc.start_y) / 2
            delta_x = calc.end_x - calc.start_x
            delta_y = calc.end_y - calc.start_y
            length = point_distance((calc.start_x, calc.start_y), (calc.end_x, calc.end_y))

            center_x, center_y = rotate_point(center_x, center_y, -(deg_to_rad(calc.rotation) + rotation), 0, 0)
            center_x, center_y = center_x+offset[0], center_y+offset[1]
            rotation += deg_to_rad(calc.rotation) + math.atan2(delta_y, delta_x)

            return [ gp.Rectangle(center_x, center_y, length, calc.width, rotation=rotation,
                        polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilated(self, offset, unit):
        return replace(self, width=self.width + UnitExpression(2*offset, unit))

    def scaled(self, scale):
        return replace(self, 
                       start_x=self.start_x * UnitExpression(scale),
                       start_y=self.start_y * UnitExpression(scale),
                       end_x=self.end_x * UnitExpression(scale),
                       end_y=self.end_y * UnitExpression(scale))


@dataclass(frozen=True, slots=True)
class CenterLine(Primitive):
    code = 21
    width : UnitExpression
    height : UnitExpression
    # center x/y
    x : UnitExpression = 0
    y : UnitExpression = 0
    rotation : Expression = 0

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            x, y = gp.rotate_point(calc.x, calc.y, -rotation, 0, 0)
            x, y = x+offset[0], y+offset[1]
            w, h = calc.width, calc.height

            return [ gp.Rectangle(x, y, w, h, rotation, polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilated(self, offset, unit):
        return replace(self, width=self.width + UnitExpression(2*offset, unit))

    def scaled(self, scale):
        return replace(self, 
                       width=self.width * UnitExpression(scale),
                       height=self.height * UnitExpression(scale),
                       x=self.x * UnitExpression(scale),
                       y=self.y * UnitExpression(scale))
            

@dataclass(frozen=True, slots=True)
class Polygon(Primitive):
    code = 5
    n_vertices : Expression
    # center x/y
    x : UnitExpression
    y : UnitExpression
    diameter : UnitExpression
    rotation : Expression = 0

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            x, y = rotate_point(calc.x, calc.y, -rotation, 0, 0)
            x, y = x+offset[0], y+offset[1]
            return [ gp.ArcPoly.from_regular_polygon(calc.x, calc.y, calc.diameter/2, calc.n_vertices, rotation,
                        polarity_dark=(bool(calc.exposure) == polarity_dark)) ]

    def dilated(self, offset, unit):
        return replace(self, diameter=self.diameter + UnitExpression(2*offset, unit))

    def scale(self, scale):
        return replace(self,
                       diameter=self.diameter * UnitExpression(scale),
                       x=self.x * UnitExpression(scale),
                       y=self.y * UnitExpression(scale))
            

@dataclass(frozen=True, slots=True)
class Thermal(Primitive):
    code = 7
    # center x/y
    x : UnitExpression
    y : UnitExpression
    d_outer : UnitExpression
    d_inner : UnitExpression
    gap_w : UnitExpression
    rotation : Expression = 0

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            x, y = rotate_point(calc.x, calc.y, -rotation, 0, 0)
            x, y = x+offset[0], y+offset[1]

            dark = (bool(calc.exposure) == polarity_dark)

            return [
                    gp.Circle(x, y, calc.d_outer/2, polarity_dark=dark),
                    gp.Circle(x, y, calc.d_inner/2, polarity_dark=not dark),
                    gp.Rectangle(x, y, d_outer, gap_w, rotation=rotation, polarity_dark=not dark),
                    gp.Rectangle(x, y, gap_w, d_outer, rotation=rotation, polarity_dark=not dark),
                    ]

    def dilate(self, offset, unit):
        # I'd rather print a warning and produce graphically slightly incorrect output in these few cases here than
        # producing macros that may evaluate to primitives with negative values.
        warnings.warn('Attempted dilation of macro aperture thermal primitive. This is not supported.')

    def scale(self, scale):
        return replace(self, 
                       d_outer=self.d_outer * UnitExpression(scale),
                       d_inner=self.d_inner * UnitExpression(scale),
                       gap_w=self.gap_w * UnitExpression(scale),
                       x=self.x * UnitExpression(scale),
                       y=self.y * UnitExpression(scale))


@dataclass(frozen=True, slots=True)
class Outline(Primitive):
    code = 4
    length: Expression
    coords: tuple
    rotation: Expression = 0

    def __post_init__(self):
        if self.length is None:
            object.__setattr__(self, 'length', expr(len(self.coords)//2-1))
        else:
            object.__setattr__(self, 'length', expr(self.length))
        object.__setattr__(self, 'rotation', expr(self.rotation))
        object.__setattr__(self, 'exposure', expr(self.exposure))

        if self.length.calculate() != len(self.coords)//2-1:
            raise ValueError('length must exactly equal number of segments, which is the number of points minus one')

        if self.coords[-2:] != self.coords[:2]:
            raise ValueError('Last point must equal first point')

        object.__setattr__(self, 'coords', tuple(
            UnitExpression(coord, self.unit) for coord in self.coords))

    @property
    def points(self):
        for x, y in zip(self.coords[0::2], self.coords[1::2]):
            yield x, y

    @classmethod
    def from_arglist(kls, arglist):
        if len(arglist[3:]) % 2 == 0:
            return kls(unit=arglist[0], exposure=arglist[1], length=arglist[2], coords=arglist[3:], rotation=0)
        else:
            return kls(unit=arglist[0], exposure=arglist[1], length=arglist[2], coords=arglist[3:-1], rotation=arglist[-1])

    def __str__(self):
        return f'<Outline {len(self.coords)} points>'

    def to_gerber(self, unit=None):
        # Calculate out rotation since at least gerbv mis-renders Outlines with rotation other than zero.
        rotation = self.rotation.optimized()
        coords = self.coords
        if isinstance(rotation, ConstantExpression):
            rotation = math.radians(rotation.value)
            # This will work even with variables in x and y, we just need to pass in cx and cy as UnitExpressions
            unit_zero = UnitExpression(expr(0), MM)
            coords = [ rotate_point(x, y, -rotation, cx=unit_zero, cy=unit_zero) for x, y in self.points ]
            coords = [ e for point in coords for e in point ]

            rotation = ConstantExpression(0)

        coords = ','.join(coord.to_gerber(unit) for coord in coords)
        return f'{self.code},{self.exposure.to_gerber()},{len(self.coords)//2-1},{coords},{rotation.to_gerber()}'

    def to_graphic_primitives(self, offset, rotation, variable_binding={}, unit=None, polarity_dark=True):
        with self.Calculator(self, variable_binding, unit) as calc:
            rotation += deg_to_rad(calc.rotation)
            bound_coords = [ rotate_point(calc(x), calc(y), -rotation, 0, 0) for x, y in self.points ]
            bound_coords = [ (x+offset[0], y+offset[1]) for x, y in bound_coords ]
            bound_radii = [None] * len(bound_coords)
            return [gp.ArcPoly(bound_coords, bound_radii, polarity_dark=(bool(calc.exposure) == polarity_dark))]

    def dilated(self, offset, unit):
        # we would need a whole polygon offset/clipping library here
        warnings.warn('Attempted dilation of macro aperture outline primitive. This is not supported.')

    def scaled(self, scale):
        return replace(self, coords=tuple(x*scale for x in self.coords))


@dataclass(frozen=True, slots=True)
class Comment:
    code = 0
    comment: str

    def to_gerber(self, unit=None):
        return f'0 {self.comment}'

    def dilated(self, offset, unit):
        return self

    def scaled(self, scale):
        return self


PRIMITIVE_CLASSES = {
    **{cls.code: cls for cls in [
        Comment,
        Circle,
        VectorLine,
        CenterLine,
        Outline,
        Polygon,
        Thermal,
    ]},
    # alternative codes
    2: VectorLine,
}