summaryrefslogtreecommitdiff
path: root/gerbonara/aperture_macros/parse.py
blob: 16c658568212ec9fbf116b62d5d1d43d703c2b5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2021 Jan Sebastian Götte <gerbonara@jaseg.de>

import operator
import re
import ast
import copy
import math

from . import primitive as ap
from .expression import *
from ..utils import MM

# we make our own here instead of using math.degrees to make sure this works with expressions, too.
def rad_to_deg(x):
    return (x / math.pi) * 180

def _map_expression(node):
    if isinstance(node, ast.Num):
        return ConstantExpression(node.n)

    elif isinstance(node, ast.BinOp):
        op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv}
        return OperatorExpression(op_map[type(node.op)], _map_expression(node.left), _map_expression(node.right))

    elif isinstance(node, ast.UnaryOp):
        if type(node.op) == ast.UAdd:
            return _map_expression(node.operand)
        else:
            return OperatorExpression(operator.sub, ConstantExpression(0), _map_expression(node.operand))

    elif isinstance(node, ast.Name):
        return VariableExpression(int(node.id[3:])) # node.id has format var[0-9]+

    else:
        raise SyntaxError('Invalid aperture macro expression')

def _parse_expression(expr):
    expr = expr.lower().replace('x', '*')
    expr = re.sub(r'\$([0-9]+)', r'var\1', expr)
    try:
        parsed = ast.parse(expr, mode='eval').body
    except SyntaxError as e:
        raise SyntaxError('Invalid aperture macro expression') from e
    return _map_expression(parsed)

class ApertureMacro:
    def __init__(self, name=None, primitives=None, variables=None):
        self._name = name
        self.comments = []
        self.variables = variables or {}
        self.primitives = primitives or []

    @classmethod
    def parse_macro(cls, name, body, unit):
        macro = cls(name)

        blocks = body.split('*')
        for block in blocks:
            if not (block := block.strip()): # empty block
                continue

            if block.startswith('0 '): # comment
                macro.comments.append(block[2:])
                continue
            
            block = re.sub(r'\s', '', block)

            if block[0] == '$': # variable definition
                name, expr = block.partition('=')
                number = int(name[1:])
                if number in macro.variables:
                    raise SyntaxError(f'Re-definition of aperture macro variable {number} inside macro')
                macro.variables[number] = _parse_expression(expr)

            else: # primitive
                primitive, *args = block.split(',')
                args = [ _parse_expression(arg) for arg in args ]
                primitive = ap.PRIMITIVE_CLASSES[int(primitive)](unit=unit, args=args)
                macro.primitives.append(primitive)

        return macro

    @property
    def name(self):
        if self._name is not None:
            return self._name
        else:
            return f'gn_{hash(self)}'

    @name.setter
    def name(self, name):
        self._name = name

    def __str__(self):
        return f'<Aperture macro {self.name}, variables {str(self.variables)}, primitives {self.primitives}>'

    def __repr__(self):
        return str(self)

    def __eq__(self, other):
        return hasattr(other, 'to_gerber') and self.to_gerber() == other.to_gerber()

    def __hash__(self):
        return hash(self.to_gerber())

    def dilated(self, offset, unit=MM):
        dup = copy.deepcopy(self)
        new_primitives = []
        for primitive in dup.primitives:
            try:
                if primitive.exposure.calculate():
                    primitive.dilate(offset, unit)
                    new_primitives.append(primitive)
            except IndexError:
                warnings.warn('Cannot dilate aperture macro primitive with exposure value computed from macro variable.')
                pass
        dup.primitives = new_primitives
        return dup

    def to_gerber(self, unit=None):
        comments = [ str(c) for c in self.comments ]
        variable_defs = [ f'${var.to_gerber(unit)}={expr}' for var, expr in self.variables.items() ]
        primitive_defs = [ prim.to_gerber(unit) for prim in self.primitives ]
        return '*\n'.join(comments + variable_defs + primitive_defs)

    def to_graphic_primitives(self, offset, rotation, parameters : [float], unit=None, polarity_dark=True):
        variables = dict(self.variables)
        for number, value in enumerate(parameters, start=1):
            if number in variables:
                raise SyntaxError(f'Re-definition of aperture macro variable {i} through parameter {value}')
            variables[number] = value

        for primitive in self.primitives:
            yield from primitive.to_graphic_primitives(offset, rotation, variables, unit, polarity_dark)

    def rotated(self, angle):
        dup = copy.deepcopy(self)
        for primitive in dup.primitives:
            # aperture macro primitives use degree counter-clockwise, our API uses radians clockwise
            primitive.rotation -= rad_to_deg(angle)
        return dup

    def scaled(self, scale):
        dup = copy.deepcopy(self)
        for primitive in dup.primitives:
            primitive.scale(scale)
        return dup


var = VariableExpression
deg_per_rad = 180 / math.pi

class GenericMacros:

    _generic_hole = lambda n: [
            ap.Circle('mm', [0, var(n), 0, 0]),
            ap.CenterLine('mm', [0, var(n), var(n+1), 0, 0, var(n+2) * -deg_per_rad])]

    # NOTE: All generic macros have rotation values specified in **clockwise radians** like the rest of the user-facing
    # API.
    circle = ApertureMacro('GNC', [
        ap.Circle('mm', [1, var(1), 0, 0, var(4) * -deg_per_rad]),
        *_generic_hole(2)])

    rect = ApertureMacro('GNR', [
        ap.CenterLine('mm', [1, var(1), var(2), 0, 0, var(5) * -deg_per_rad]),
        *_generic_hole(3)])

    # params: width, height, corner radius, *hole, rotation
    rounded_rect = ApertureMacro('GRR', [
        ap.CenterLine('mm', [1, var(1)-2*var(3), var(2), 0, 0, var(6) * -deg_per_rad]),
        ap.CenterLine('mm', [1, var(1), var(2)-2*var(3), 0, 0, var(6) * -deg_per_rad]),
        ap.Circle('mm', [1, var(3)*2, +(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad]),
        ap.Circle('mm', [1, var(3)*2, +(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad]),
        ap.Circle('mm', [1, var(3)*2, -(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad]),
        ap.Circle('mm', [1, var(3)*2, -(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad]),
        *_generic_hole(4)])

    # params: width, height, length difference between narrow side (top) and wide side (bottom), *hole, rotation
    isosceles_trapezoid = ApertureMacro('GTR', [
        ap.Outline('mm', [1, 4,
                          var(1)/-2,            var(2)/-2,
                          var(1)/-2+var(3)/2,   var(2)/2,
                          var(1)/2-var(3)/2,    var(2)/2,
                          var(1)/2,             var(2)/-2,
                          var(1)/-2,            var(2)/-2,
                          var(6) * -deg_per_rad]),
        *_generic_hole(4)])

    # params: width, height, length difference between narrow side (top) and wide side (bottom), margin, *hole, rotation
    rounded_isosceles_trapezoid = ApertureMacro('GRTR', [
        ap.Outline('mm', [1, 4,
                          var(1)/-2,            var(2)/-2,
                          var(1)/-2+var(3)/2,   var(2)/2,
                          var(1)/2-var(3)/2,    var(2)/2,
                          var(1)/2,             var(2)/-2,
                          var(1)/-2,            var(2)/-2,
                          var(6) * -deg_per_rad]),
        ap.VectorLine('mm', [1, var(4)*2, 
                          var(1)/-2,            var(2)/-2,
                          var(1)/-2+var(3)/2,   var(2)/2,]),
        ap.VectorLine('mm', [1, var(4)*2, 
                          var(1)/-2+var(3)/2,   var(2)/2,
                          var(1)/2-var(3)/2,    var(2)/2,]),
        ap.VectorLine('mm', [1, var(4)*2, 
                          var(1)/2-var(3)/2,    var(2)/2,
                          var(1)/2,             var(2)/-2,]),
        ap.VectorLine('mm', [1, var(4)*2, 
                          var(1)/2,             var(2)/-2,
                          var(1)/-2,            var(2)/-2,]),
        ap.Circle('mm', [1, var(4)*2, 
                          var(1)/-2,            var(2)/-2,]),
        ap.Circle('mm', [1, var(4)*2, 
                          var(1)/-2+var(3)/2,   var(2)/2,]),
        ap.Circle('mm', [1, var(4)*2, 
                          var(1)/2-var(3)/2,    var(2)/2,]),
        ap.Circle('mm', [1, var(4)*2, 
                          var(1)/2,             var(2)/-2,]),
        *_generic_hole(5)])

    # w must be larger than h
    # params: width, height, *hole, rotation
    obround = ApertureMacro('GNO', [
        ap.CenterLine('mm', [1, var(1), var(2), 0, 0, var(5) * -deg_per_rad]),
        ap.Circle('mm', [1, var(2), +var(1)/2, 0, var(5) * -deg_per_rad]),
        ap.Circle('mm', [1, var(2), -var(1)/2, 0, var(5) * -deg_per_rad]),
        *_generic_hole(3) ])

    polygon = ApertureMacro('GNP', [
        ap.Polygon('mm', [1, var(2), 0, 0, var(1), var(3) * -deg_per_rad]),
        ap.Circle('mm', [0, var(4), 0, 0])])


if __name__ == '__main__':
    import sys
    #for line in sys.stdin:
        #expr = _parse_expression(line.strip())
        #print(expr, '->', expr.optimized())

    for primitive in parse_macro(sys.stdin.read(), 'mm'):
        print(primitive)