1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Jan Sebastian Götte <gerbonara@jaseg.de>
from dataclasses import dataclass, field, replace
import operator
import re
import ast
import copy
import math
from . import primitive as ap
from .expression import *
from ..utils import MM
# we make our own here instead of using math.degrees to make sure this works with expressions, too.
def rad_to_deg(x):
return (x / math.pi) * 180
def _map_expression(node):
if isinstance(node, ast.Num):
return ConstantExpression(node.n)
elif isinstance(node, ast.BinOp):
op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv}
return OperatorExpression(op_map[type(node.op)], _map_expression(node.left), _map_expression(node.right))
elif isinstance(node, ast.UnaryOp):
if type(node.op) == ast.UAdd:
return _map_expression(node.operand)
else:
return OperatorExpression(operator.sub, ConstantExpression(0), _map_expression(node.operand))
elif isinstance(node, ast.Name):
return VariableExpression(int(node.id[3:])) # node.id has format var[0-9]+
else:
raise SyntaxError('Invalid aperture macro expression')
def _parse_expression(expr):
expr = expr.lower().replace('x', '*')
expr = re.sub(r'\$([0-9]+)', r'var\1', expr)
try:
parsed = ast.parse(expr, mode='eval').body
except SyntaxError as e:
raise SyntaxError('Invalid aperture macro expression') from e
return _map_expression(parsed)
@dataclass(frozen=True, slots=True)
class ApertureMacro:
name: str = None
primitives: tuple = ()
variables: tuple = ()
comments: tuple = ()
def __post_init__(self):
if self.name is None or re.match(r'GNX[0-9A-F]{16}', self.name):
# We can't use field(default_factory=...) here because that factory doesn't get a reference to the instance.
object.__setattr__(self, 'name', f'GNX{hash(self)&0xffffffffffffffff:016X}')
@classmethod
def parse_macro(cls, name, body, unit):
comments = []
variables = {}
primitives = []
blocks = body.split('*')
for block in blocks:
if not (block := block.strip()): # empty block
continue
if block.startswith('0 '): # comment
comments.append(block[2:])
continue
block = re.sub(r'\s', '', block)
if block[0] == '$': # variable definition
name, expr = block.partition('=')
number = int(name[1:])
if number in variables:
raise SyntaxError(f'Re-definition of aperture macro variable {number} inside macro')
variables[number] = _parse_expression(expr)
else: # primitive
primitive, *args = block.split(',')
args = [ _parse_expression(arg) for arg in args ]
primitive = ap.PRIMITIVE_CLASSES[int(primitive)](unit=unit, args=args)
primitives.append(primitive)
variables = [variables.get(i+1) for i in range(max(variables.keys()))]
return kls(name, tuple(primitives), tuple(variables), tuple(primitives))
def __str__(self):
return f'<Aperture macro {self.name}, variables {str(self.variables)}, primitives {self.primitives}>'
def __repr__(self):
return str(self)
def dilated(self, offset, unit=MM):
new_primitives = []
for primitive in self.primitives:
try:
if primitive.exposure.calculate():
new_primitives += primitive.dilated(offset, unit)
except IndexError:
warnings.warn('Cannot dilate aperture macro primitive with exposure value computed from macro variable.')
pass
return replace(self, primitives=tuple(new_primitives))
def to_gerber(self, unit=None):
comments = [ str(c) for c in self.comments ]
variable_defs = [ f'${var}={expr}' for var, expr in enumerate(self.variables, start=1) if expr is not None ]
primitive_defs = [ prim.to_gerber(unit) for prim in self.primitives ]
return '*\n'.join(comments + variable_defs + primitive_defs)
def to_graphic_primitives(self, offset, rotation, parameters : [float], unit=None, polarity_dark=True):
variables = {i: v for i, v in enumerate(self.variables, start=1) if v is not None}
for number, value in enumerate(parameters, start=1):
if number in variables:
raise SyntaxError(f'Re-definition of aperture macro variable {number} through parameter {value}')
variables[number] = value
for primitive in self.primitives:
yield from primitive.to_graphic_primitives(offset, rotation, variables, unit, polarity_dark)
def rotated(self, angle):
# aperture macro primitives use degree counter-clockwise, our API uses radians clockwise
return replace(self, primitives=tuple(
replace(primitive, rotation=primitive.rotation - rad_to_deg(angle)) for primitive in self.primitives))
def scaled(self, scale):
return replace(self, primitives=tuple(
primitive.scaled(scale) for primitive in self.primitives))
var = VariableExpression
deg_per_rad = 180 / math.pi
class GenericMacros:
_generic_hole = lambda n: (ap.Circle('mm', 0, var(n), 0, 0),)
# NOTE: All generic macros have rotation values specified in **clockwise radians** like the rest of the user-facing
# API.
circle = ApertureMacro('GNC', (
ap.Circle('mm', 1, var(1), 0, 0, var(4) * -deg_per_rad),
*_generic_hole(2)))
rect = ApertureMacro('GNR', (
ap.CenterLine('mm', 1, var(1), var(2), 0, 0, var(5) * -deg_per_rad),
*_generic_hole(3)))
# params: width, height, corner radius, *hole, rotation
rounded_rect = ApertureMacro('GRR', (
ap.CenterLine('mm', 1, var(1)-2*var(3), var(2), 0, 0, var(6) * -deg_per_rad),
ap.CenterLine('mm', 1, var(1), var(2)-2*var(3), 0, 0, var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, +(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, +(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, -(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad),
ap.Circle('mm', 1, var(3)*2, -(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad),
*_generic_hole(4)))
# params: width, height, length difference between narrow side (top) and wide side (bottom), *hole, rotation
isosceles_trapezoid = ApertureMacro('GTR', (
ap.Outline('mm', 1, 4,
(var(1)/-2, var(2)/-2,
var(1)/-2+var(3)/2, var(2)/2,
var(1)/2-var(3)/2, var(2)/2,
var(1)/2, var(2)/-2,
var(1)/-2, var(2)/-2,),
var(6) * -deg_per_rad),
*_generic_hole(4)))
# params: width, height, length difference between narrow side (top) and wide side (bottom), margin, *hole, rotation
rounded_isosceles_trapezoid = ApertureMacro('GRTR', (
ap.Outline('mm', 1, 4,
(var(1)/-2, var(2)/-2,
var(1)/-2+var(3)/2, var(2)/2,
var(1)/2-var(3)/2, var(2)/2,
var(1)/2, var(2)/-2,
var(1)/-2, var(2)/-2,),
var(6) * -deg_per_rad),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/-2, var(2)/-2,
var(1)/-2+var(3)/2, var(2)/2,),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/-2+var(3)/2, var(2)/2,
var(1)/2-var(3)/2, var(2)/2,),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/2-var(3)/2, var(2)/2,
var(1)/2, var(2)/-2,),
ap.VectorLine('mm', 1, var(4)*2,
var(1)/2, var(2)/-2,
var(1)/-2, var(2)/-2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/-2, var(2)/-2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/-2+var(3)/2, var(2)/2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/2-var(3)/2, var(2)/2,),
ap.Circle('mm', 1, var(4)*2,
var(1)/2, var(2)/-2,),
*_generic_hole(5)))
# w must be larger than h
# params: width, height, *hole, rotation
obround = ApertureMacro('GNO', (
ap.CenterLine('mm', 1, var(1)-var(2), var(2), 0, 0, var(5) * -deg_per_rad),
ap.Circle('mm', 1, var(2), +(var(1)-var(2))/2, 0, var(5) * -deg_per_rad),
ap.Circle('mm', 1, var(2), -(var(1)-var(2))/2, 0, var(5) * -deg_per_rad),
*_generic_hole(3) ))
polygon = ApertureMacro('GNP', (
ap.Polygon('mm', 1, var(2), 0, 0, var(1), var(3) * -deg_per_rad),
ap.Circle('mm', 0, var(4), 0, 0)))
if __name__ == '__main__':
import sys
#for line in sys.stdin:
#expr = _parse_expression(line.strip())
#print(expr, '->', expr.optimized())
for primitive in parse_macro(sys.stdin.read(), 'mm'):
print(primitive)
|