1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
from .render import GerberContext
from ..gerber_statements import *
from ..primitives import AMGroup, Arc, Circle, Line, Rectangle
class Rs274xContext(GerberContext):
def __init__(self, settings):
GerberContext.__init__(self)
self.header = []
self.body = []
self.end = [EofStmt()]
# Current values so we know if we have to execute
# moves, levey changes before anything else
self._level_polarity = None
self._pos = (None, None)
self._func = None
self._quadrant_mode = None
self._dcode = None
self._next_dcode = 10
self._rects = {}
self._circles = {}
self._macros = {}
self._i_none = 0
self._j_none = 0
self._define_dcodes()
def _define_dcodes(self):
self._get_circle(.1575, 10)
self._get_circle(.035, 17)
self._get_rectangle(0.1575, 0.1181, 15)
self._get_rectangle(0.0492, 0.0118, 16)
self._get_circle(.0197, 11)
self._get_rectangle(0.0236, 0.0591, 12)
self._get_circle(.005, 18)
self._get_circle(.008, 19)
self._get_circle(.009, 20)
self._get_circle(.01, 21)
self._get_circle(.02, 22)
self._get_circle(.006, 23)
self._get_circle(.015, 24)
self._get_rectangle(0.1678, 0.1284, 26)
self._get_rectangle(0.0338, 0.0694, 25)
def _simplify_point(self, point):
return (point[0] if point[0] != self._pos[0] else None, point[1] if point[1] != self._pos[1] else None)
def _simplify_offset(self, point, offset):
if point[0] != offset[0]:
xoffset = point[0] - offset[0]
else:
xoffset = self._i_none
if point[1] != offset[1]:
yoffset = point[1] - offset[1]
else:
yoffset = self._j_none
return (xoffset, yoffset)
@property
def statements(self):
return self.header + self.body + self.end
def set_bounds(self, bounds):
pass
def _paint_background(self):
pass
def _select_aperture(self, aperture):
# Select the right aperture if not already selected
if aperture:
if isinstance(aperture, Circle):
aper = self._get_circle(aperture.diameter)
elif isinstance(aperture, Rectangle):
aper = self._get_rectangle(aperture.width, aperture.height)
else:
raise NotImplementedError('Line with invalid aperture type')
if aper.d != self._dcode:
self.body.append(ApertureStmt(aper.d))
self._dcode = aper.d
def _render_line(self, line, color):
self._select_aperture(line.aperture)
# Get the right function
if self._func != CoordStmt.FUNC_LINEAR:
func = CoordStmt.FUNC_LINEAR
else:
func = None
self._func = CoordStmt.FUNC_LINEAR
if self._pos != line.start:
self.body.append(CoordStmt.move(func, self._simplify_point(line.start)))
self._pos = line.start
# We already set the function, so the next command doesn't require that
func = None
self.body.append(CoordStmt.line(func, self._simplify_point(line.end)))
self._pos = line.end
def _render_arc(self, arc, color):
# Optionally set the quadrant mode if it has changed:
if arc.quadrant_mode != self._quadrant_mode:
if arc.quadrant_mode != 'multi-quadrant':
self.body.append(QuadrantModeStmt.single())
else:
self.body.append(QuadrantModeStmt.multi())
self._quadrant_mode = arc.quadrant_mode
# Select the right aperture if not already selected
self._select_aperture(arc.aperture)
# Find the right movement mode. Always set to be sure it is really right
dir = arc.direction
if dir == 'clockwise':
func = CoordStmt.FUNC_ARC_CW
self._func = CoordStmt.FUNC_ARC_CW
elif dir == 'counterclockwise':
func = CoordStmt.FUNC_ARC_CCW
self._func = CoordStmt.FUNC_ARC_CCW
else:
raise ValueError('Invalid circular interpolation mode')
if self._pos != arc.start:
# TODO I'm not sure if this is right
self.body.append(CoordStmt.move(CoordStmt.FUNC_LINEAR, self._simplify_point(arc.start)))
self._pos = arc.start
center = self._simplify_offset(arc.center, arc.start)
end = self._simplify_point(arc.end)
self.body.append(CoordStmt.arc(func, end, center))
self._pos = arc.end
def _render_region(self, region, color):
self._render_level_polarity(region)
self.body.append(RegionModeStmt.on())
for p in region.primitives:
if isinstance(p, Line):
self._render_line(p, color)
else:
self._render_arc(p, color)
self.body.append(RegionModeStmt.off())
def _render_level_polarity(self, region):
if region.level_polarity != self._level_polarity:
self._level_polarity = region.level_polarity
self.body.append(LPParamStmt.from_region(region))
def _render_flash(self, primitive, aperture):
if aperture.d != self._dcode:
self.body.append(ApertureStmt(aperture.d))
self._dcode = aperture.d
self.body.append(CoordStmt.flash( self._simplify_point(primitive.position)))
self._pos = primitive.position
def _get_circle(self, diameter, dcode = None):
'''Define a circlar aperture'''
aper = self._circles.get(diameter, None)
if not aper:
if not dcode:
dcode = self._next_dcode
self._next_dcode += 1
else:
self._next_dcode = max(dcode + 1, self._next_dcode)
aper = ADParamStmt.circle(dcode, diameter)
self._circles[diameter] = aper
self.header.append(aper)
return aper
def _render_circle(self, circle, color):
aper = self._get_circle(circle.diameter)
self._render_flash(circle, aper)
def _get_rectangle(self, width, height, dcode = None):
'''Get a rectanglar aperture. If it isn't defined, create it'''
key = (width, height)
aper = self._rects.get(key, None)
if not aper:
if not dcode:
dcode = self._next_dcode
self._next_dcode += 1
else:
self._next_dcode = max(dcode + 1, self._next_dcode)
aper = ADParamStmt.rect(dcode, width, height)
self._rects[(width, height)] = aper
self.header.append(aper)
return aper
def _render_rectangle(self, rectangle, color):
aper = self._get_rectangle(rectangle.width, rectangle.height)
self._render_flash(rectangle, aper)
def _render_obround(self, obround, color):
pass
def _render_polygon(self, polygon, color):
pass
def _render_drill(self, circle, color):
pass
def _hash_amacro(self, amgroup):
'''Calculate a very quick hash code for deciding if we should even check AM groups for comparision'''
hash = ''
for primitive in amgroup.primitives:
hash += primitive.__class__.__name__[0]
if hasattr(primitive, 'primitives'):
hash += str(len(primitive.primitives))
return hash
def _get_amacro(self, amgroup, dcode = None):
# Macros are a little special since we don't have a good way to compare them quickly
# but in most cases, this should work
hash = self._hash_amacro(amgroup)
macro = self._macros.get(hash, None)
if not macro:
# This is a new macro, so define it
if not dcode:
dcode = self._next_dcode
self._next_dcode += 1
else:
self._next_dcode = max(dcode + 1, self._next_dcode)
# Create the statements
# TODO
statements = []
aperdef = ADParamStmt.macro(dcode, hash)
# Store the dcode and the original so we can check if it really is the same
macro = (aperdef, amgroup)
self._macros[hash] = macro
else:
# We hae a definition, but check that the groups actually are the same
offset = (amgroup.position[0] - macro[1].position[0], amgroup.position[1] - macro[1].position[1])
if not amgroup.equivalent(macro[1], offset):
raise ValueError('Two AMGroup have the same hash but are not equivalent')
return macro[0]
def _render_amgroup(self, amgroup, color):
aper = self._get_amacro(amgroup)
self._render_flash(amgroup, aper)
def _render_inverted_layer(self):
pass
def post_render_primitives(self):
'''No more primitives, so set the end marker'''
self.body.append()
|