1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cairocffi as cairo
from operator import mul, div
import math
import tempfile
from .render import GerberContext
from ..primitives import *
try:
from cStringIO import StringIO
except(ImportError):
from io import StringIO
class GerberCairoContext(GerberContext):
def __init__(self, scale=300):
GerberContext.__init__(self)
self.scale = (scale, scale)
self.surface = None
self.ctx = None
self.bg = False
self.mask = None
self.mask_ctx = None
self.origin_in_inch = None
self.size_in_inch = None
def set_bounds(self, bounds, new_surface=False):
origin_in_inch = (bounds[0][0], bounds[1][0])
size_in_inch = (abs(bounds[0][1] - bounds[0][0]), abs(bounds[1][1] - bounds[1][0]))
size_in_pixels = map(mul, size_in_inch, self.scale)
self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch
self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch
if (self.surface is None) or new_surface:
self.surface_buffer = tempfile.NamedTemporaryFile()
self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
self.ctx = cairo.Context(self.surface)
self.ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
self.ctx.scale(1, -1)
self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1])
self.mask = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1])
self.mask_ctx = cairo.Context(self.mask)
self.mask_ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
self.mask_ctx.scale(1, -1)
self.mask_ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1])
def render_layers(self, layers, filename):
""" Render a set of layers
"""
self.set_bounds(layers[0].bounds, True)
self._paint_background(True)
for layer in layers:
self._render_layer(layer)
self.dump(filename)
@property
def origin_in_pixels(self):
return tuple(map(mul, self.origin_in_inch, self.scale)) if self.origin_in_inch is not None else (0.0, 0.0)
@property
def size_in_pixels(self):
return tuple(map(mul, self.size_in_inch, self.scale)) if self.size_in_inch is not None else (0.0, 0.0)
def _render_layer(self, layer):
self.color = layer.settings.color
self.alpha = layer.settings.alpha
self.invert = layer.settings.invert
if layer.settings.mirror:
raise Warning('mirrored layers aren\'t supported yet...')
if self.invert:
self._clear_mask()
for p in layer.primitives:
self.render(p)
if self.invert:
self._render_mask()
def _render_line(self, line, color):
start = map(mul, line.start, self.scale)
end = map(mul, line.end, self.scale)
if not self.invert:
ctx = self.ctx
ctx.set_source_rgba(*color, alpha=self.alpha)
ctx.set_operator(cairo.OPERATOR_OVER if line.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
else:
ctx = self.mask_ctx
ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
ctx.set_operator(cairo.OPERATOR_CLEAR)
if isinstance(line.aperture, Circle):
width = line.aperture.diameter
ctx.set_line_width(width * self.scale[0])
ctx.set_line_cap(cairo.LINE_CAP_ROUND)
ctx.move_to(*start)
ctx.line_to(*end)
ctx.stroke()
elif isinstance(line.aperture, Rectangle):
points = [tuple(map(mul, x, self.scale)) for x in line.vertices]
ctx.set_line_width(0)
ctx.move_to(*points[0])
for point in points[1:]:
ctx.line_to(*point)
ctx.fill()
def _render_arc(self, arc, color):
center = map(mul, arc.center, self.scale)
start = map(mul, arc.start, self.scale)
end = map(mul, arc.end, self.scale)
radius = self.scale[0] * arc.radius
angle1 = arc.start_angle
angle2 = arc.end_angle
width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
if not self.invert:
ctx = self.ctx
ctx.set_source_rgba(*color, alpha=self.alpha)
ctx.set_operator(cairo.OPERATOR_OVER if arc.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
else:
ctx = self.mask_ctx
ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
ctx.set_operator(cairo.OPERATOR_CLEAR)
ctx.set_line_width(width * self.scale[0])
ctx.set_line_cap(cairo.LINE_CAP_ROUND)
ctx.move_to(*start) # You actually have to do this...
if arc.direction == 'counterclockwise':
ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2)
else:
ctx.arc_negative(*center, radius=radius, angle1=angle1, angle2=angle2)
ctx.move_to(*end) # ...lame
def _render_region(self, region, color):
if not self.invert:
ctx = self.ctx
ctx.set_source_rgba(*color, alpha=self.alpha)
ctx.set_operator(cairo.OPERATOR_OVER if region.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
else:
ctx = self.mask_ctx
ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
ctx.set_operator(cairo.OPERATOR_CLEAR)
ctx.set_line_width(0)
ctx.set_line_cap(cairo.LINE_CAP_ROUND)
ctx.move_to(*tuple(map(mul, region.primitives[0].start, self.scale)))
for p in region.primitives:
if isinstance(p, Line):
ctx.line_to(*tuple(map(mul, p.end, self.scale)))
else:
center = map(mul, p.center, self.scale)
start = map(mul, p.start, self.scale)
end = map(mul, p.end, self.scale)
radius = self.scale[0] * p.radius
angle1 = p.start_angle
angle2 = p.end_angle
if p.direction == 'counterclockwise':
ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2)
else:
ctx.arc_negative(*center, radius=radius, angle1=angle1, angle2=angle2)
ctx.fill()
def _render_circle(self, circle, color):
center = tuple(map(mul, circle.position, self.scale))
if not self.invert:
ctx = self.ctx
ctx.set_source_rgba(*color, alpha=self.alpha)
ctx.set_operator(cairo.OPERATOR_OVER if circle.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
else:
ctx = self.mask_ctx
ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
ctx.set_operator(cairo.OPERATOR_CLEAR)
ctx.set_line_width(0)
ctx.arc(*center, radius=circle.radius * self.scale[0], angle1=0, angle2=2 * math.pi)
ctx.fill()
def _render_rectangle(self, rectangle, color):
ll = map(mul, rectangle.lower_left, self.scale)
width, height = tuple(map(mul, (rectangle.width, rectangle.height), map(abs, self.scale)))
if not self.invert:
ctx = self.ctx
ctx.set_source_rgba(*color, alpha=self.alpha)
ctx.set_operator(cairo.OPERATOR_OVER if rectangle.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
else:
ctx = self.mask_ctx
ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
ctx.set_operator(cairo.OPERATOR_CLEAR)
ctx.set_line_width(0)
ctx.rectangle(*ll, width=width, height=height)
ctx.fill()
def _render_obround(self, obround, color):
self._render_circle(obround.subshapes['circle1'], color)
self._render_circle(obround.subshapes['circle2'], color)
self._render_rectangle(obround.subshapes['rectangle'], color)
def _render_drill(self, circle, color):
self._render_circle(circle, color)
def _render_test_record(self, primitive, color):
position = tuple(map(add, primitive.position, self.origin_in_inch))
self.ctx.select_font_face('monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)
self.ctx.set_font_size(13)
self._render_circle(Circle(position, 0.015), color)
self.ctx.set_source_rgb(*color)
self.ctx.set_operator(cairo.OPERATOR_OVER if primitive.level_polarity == "dark" else cairo.OPERATOR_CLEAR)
self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position])
self.ctx.scale(1, -1)
self.ctx.show_text(primitive.net_name)
self.ctx.scale(1, -1)
def _clear_mask(self):
self.mask_ctx.set_operator(cairo.OPERATOR_OVER)
self.mask_ctx.set_source_rgba(*self.color, alpha=self.alpha)
self.mask_ctx.paint()
def _render_mask(self):
self.ctx.set_operator(cairo.OPERATOR_OVER)
ptn = cairo.SurfacePattern(self.mask)
ptn.set_matrix(cairo.Matrix(xx=1.0, yy=-1.0, x0=-self.origin_in_pixels[0],
y0=self.size_in_pixels[1] + self.origin_in_pixels[1]))
self.ctx.set_source(ptn)
self.ctx.paint()
def _paint_background(self, force=False):
if (not self.bg) or force:
self.bg = True
self.ctx.set_source_rgba(*self.background_color, alpha=1.0)
self.ctx.paint()
def dump(self, filename):
is_svg = filename.lower().endswith(".svg")
if is_svg:
self.surface.finish()
self.surface_buffer.flush()
with open(filename, "w") as f:
self.surface_buffer.seek(0)
f.write(self.surface_buffer.read())
f.flush()
else:
self.surface.write_to_png(filename)
def dump_str(self):
""" Return a string containing the rendered image.
"""
fobj = StringIO()
self.surface.write_to_png(fobj)
return fobj.getvalue()
def dump_svg_str(self):
""" Return a string containg the rendered SVG.
"""
self.surface.finish()
self.surface_buffer.flush()
return self.surface_buffer.read()
|