summaryrefslogtreecommitdiff
path: root/gerber/render/cairo_backend.py
blob: 3ee38ae24363d400655ccc584716ceb771b1ca12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#! /usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .render import GerberContext

import cairo

from operator import mul
import math
import tempfile

from ..primitives import *

class GerberCairoContext(GerberContext):
    def __init__(self, scale=300):
        GerberContext.__init__(self)
        self.scale = (scale, scale)
        self.surface = None
        self.ctx = None
        self.bg = False
        
    def set_bounds(self, bounds):
        origin_in_inch = (bounds[0][0], bounds[1][0])
        size_in_inch = (abs(bounds[0][1] - bounds[0][0]), abs(bounds[1][1] - bounds[1][0]))
        size_in_pixels = map(mul, size_in_inch, self.scale)

        if self.surface is None:
            self.surface_buffer = tempfile.NamedTemporaryFile()
            self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
            self.ctx = cairo.Context(self.surface)
            self.ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
            self.ctx.scale(1, -1)
            self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1])
            # self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), -origin_in_inch[1]*self.scale[1])

    def _render_line(self, line, color):
        start = map(mul, line.start, self.scale)
        end = map(mul, line.end, self.scale)
        if isinstance(line.aperture, Circle):
            width = line.aperture.diameter
            self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
            self.ctx.set_operator(cairo.OPERATOR_OVER if (line.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
            self.ctx.set_line_width(width * self.scale[0])
            self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
            self.ctx.move_to(*start)
            self.ctx.line_to(*end)
            self.ctx.stroke()
        elif isinstance(line.aperture, Rectangle):
            points = [tuple(map(mul, x, self.scale)) for x in line.vertices]
            self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
            self.ctx.set_operator(cairo.OPERATOR_OVER if (line.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
            self.ctx.set_line_width(0)
            self.ctx.move_to(*points[0])
            for point in points[1:]:
                self.ctx.line_to(*point)
            self.ctx.fill()

    def _render_arc(self, arc, color):
        center = map(mul, arc.center, self.scale)
        start = map(mul, arc.start, self.scale)
        end = map(mul, arc.end, self.scale)
        radius = self.scale[0] * arc.radius
        angle1 = arc.start_angle
        angle2 = arc.end_angle
        width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
        self.ctx.set_source_rgba(color[0], color[1], color[2],  self.alpha)
        self.ctx.set_operator(cairo.OPERATOR_OVER if (arc.level_polarity == "dark" and not self.invert)else cairo.OPERATOR_CLEAR)        
        self.ctx.set_line_width(width * self.scale[0])
        self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
        self.ctx.move_to(*start)  # You actually have to do this...
        if arc.direction == 'counterclockwise':
            self.ctx.arc(center[0], center[1], radius, angle1, angle2)
        else:
            self.ctx.arc_negative(center[0], center[1], radius, angle1, angle2)
        self.ctx.move_to(*end)  # ...lame
        self.ctx.stroke()

    def _render_region(self, region, color):
        self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
        self.ctx.set_operator(cairo.OPERATOR_OVER if (region.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
        self.ctx.set_line_width(0)
        self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
        self.ctx.move_to(*tuple(map(mul, region.primitives[0].start, self.scale)))
        for p in region.primitives:
            if isinstance(p, Line):
                self.ctx.line_to(*tuple(map(mul, p.end, self.scale)))
            else:
                center = map(mul, p.center, self.scale)
                start = map(mul, p.start, self.scale)
                end = map(mul, p.end, self.scale)
                radius = self.scale[0] * p.radius
                angle1 = p.start_angle
                angle2 = p.end_angle
                if p.direction == 'counterclockwise':
                    self.ctx.arc(center[0], center[1], radius, angle1, angle2)
                else:
                    self.ctx.arc_negative(center[0], center[1], radius, angle1, angle2)
        self.ctx.fill()

    def _render_circle(self, circle, color):
        center = tuple(map(mul, circle.position, self.scale))
        self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
        self.ctx.set_operator(cairo.OPERATOR_OVER if (circle.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)        
        self.ctx.set_line_width(0)
        self.ctx.arc(center[0], center[1], circle.radius * self.scale[0], 0, 2 * math.pi)
        self.ctx.fill()

    def _render_rectangle(self, rectangle, color):
        ll = map(mul, rectangle.lower_left, self.scale)
        width, height = tuple(map(mul, (rectangle.width, rectangle.height), map(abs, self.scale)))
        
        if rectangle.rotation != 0:
            self.ctx.save()
            
            center = map(mul, rectangle.position, self.scale)
            matrix = cairo.Matrix()
            matrix.translate(center[0], center[1])
            # For drawing, we already handles the translation
            ll[0] = ll[0] - center[0]
            ll[1] = ll[1] - center[1]
            matrix.rotate(rectangle.rotation)
            self.ctx.transform(matrix)
            
        self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
        self.ctx.set_operator(cairo.OPERATOR_OVER if (rectangle.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)        
        self.ctx.set_line_width(0)
        self.ctx.rectangle(ll[0], ll[1], width, height)
        self.ctx.fill()
        
        if rectangle.rotation != 0:
            self.ctx.restore()

    def _render_obround(self, obround, color):
        self._render_circle(obround.subshapes['circle1'], color)
        self._render_circle(obround.subshapes['circle2'], color)
        self._render_rectangle(obround.subshapes['rectangle'], color)

    def _render_drill(self, circle, color):
        self._render_circle(circle, color)
        
    def _render_amgroup(self, amgroup, color):
        for primitive in amgroup.primitives:
            self.render(primitive)

    def _render_test_record(self, primitive, color):
        self.ctx.select_font_face('monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL)
        self.ctx.set_font_size(200)
        self._render_circle(Circle(primitive.position, 0.01), color)
        self.ctx.set_source_rgb(*color)
        self.ctx.set_operator(cairo.OPERATOR_OVER if (primitive.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)        
        self.ctx.move_to(*[self.scale[0] * (coord + 0.01) for coord in primitive.position])
        self.ctx.scale(1, -1)
        self.ctx.show_text(primitive.net_name)
        self.ctx.scale(1, -1)

    def _paint_inverted_layer(self):
        self.ctx.set_source_rgba(self.background_color[0], self.background_color[1], self.background_color[2])
        self.ctx.set_operator(cairo.OPERATOR_OVER)
        self.ctx.paint()
        self.ctx.set_operator(cairo.OPERATOR_CLEAR)

    def _paint_background(self):
        if not self.bg:
            self.bg = True
            self.ctx.set_source_rgba(self.background_color[0], self.background_color[1], self.background_color[2])
            self.ctx.paint()

    def dump(self, filename):
        is_svg = filename.lower().endswith(".svg")

        if is_svg:
            self.surface.finish()
            self.surface_buffer.flush()

            with open(filename, "w") as f:
                self.surface_buffer.seek(0)
                f.write(self.surface_buffer.read())
                f.flush()

        else:
            self.surface.write_to_png(filename)
            
    def dump_svg_str(self):
        self.surface.finish()
        self.surface_buffer.flush()
        return self.surface_buffer.read()