1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
try:
import cairo
except ImportError:
import cairocffi as cairo
import math
from operator import mul, div
import tempfile
import copy
import os
from .render import GerberContext, RenderSettings
from .theme import THEMES
from ..primitives import *
try:
from cStringIO import StringIO
except (ImportError):
from io import StringIO
class GerberCairoContext(GerberContext):
def __init__(self, scale=300):
super(GerberCairoContext, self).__init__()
self.scale = (scale, scale)
self.surface = None
self.surface_buffer = None
self.ctx = None
self.active_layer = None
self.active_matrix = None
self.output_ctx = None
self.has_bg = False
self.origin_in_inch = None
self.size_in_inch = None
self._xform_matrix = None
self._render_count = 0
@property
def origin_in_pixels(self):
return (self.scale_point(self.origin_in_inch)
if self.origin_in_inch is not None else (0.0, 0.0))
@property
def size_in_pixels(self):
return (self.scale_point(self.size_in_inch)
if self.size_in_inch is not None else (0.0, 0.0))
def set_bounds(self, bounds, new_surface=False):
origin_in_inch = (bounds[0][0], bounds[1][0])
size_in_inch = (abs(bounds[0][1] - bounds[0][0]),
abs(bounds[1][1] - bounds[1][0]))
size_in_pixels = self.scale_point(size_in_inch)
self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch
self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch
if (self.surface is None) or new_surface:
self.surface_buffer = tempfile.NamedTemporaryFile()
self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
self.output_ctx = cairo.Context(self.surface)
self.output_ctx.scale(1, -1)
self.output_ctx.translate(-(origin_in_inch[0] * self.scale[0]),
(-origin_in_inch[1] * self.scale[0]) - size_in_pixels[1])
self._xform_matrix = cairo.Matrix(xx=1.0, yy=-1.0,
x0=-self.origin_in_pixels[0],
y0=self.size_in_pixels[1] + self.origin_in_pixels[1])
def render_layer(self, layer, filename=None, settings=None, bgsettings=None,
verbose=False):
if settings is None:
settings = THEMES['default'].get(layer.layer_class, RenderSettings())
if bgsettings is None:
bgsettings = THEMES['default'].get('background', RenderSettings())
if self._render_count == 0:
if verbose:
print('[Render]: Rendering Background.')
self.clear()
self.set_bounds(layer.bounds)
self._paint_background(bgsettings)
if verbose:
print('[Render]: Rendering {} Layer.'.format(layer.layer_class))
self._render_count += 1
self._render_layer(layer, settings)
if filename is not None:
self.dump(filename, verbose)
def render_layers(self, layers, filename, theme=THEMES['default'],
verbose=False):
""" Render a set of layers
"""
self.clear()
bgsettings = theme['background']
for layer in layers:
settings = theme.get(layer.layer_class, RenderSettings())
self.render_layer(layer, settings=settings, bgsettings=bgsettings,
verbose=verbose)
self.dump(filename, verbose)
def dump(self, filename=None, verbose=False):
""" Save image as `filename`
"""
try:
is_svg = os.path.splitext(filename.lower())[1] == '.svg'
except:
is_svg = False
if verbose:
print('[Render]: Writing image to {}'.format(filename))
if is_svg:
self.surface.finish()
self.surface_buffer.flush()
with open(filename, "w") as f:
self.surface_buffer.seek(0)
f.write(self.surface_buffer.read())
f.flush()
else:
print("Wriitng To Png: filename: {}".format(filename))
return self.surface.write_to_png(filename)
def dump_str(self):
""" Return a string containing the rendered image.
"""
fobj = StringIO()
self.surface.write_to_png(fobj)
return fobj.getvalue()
def dump_svg_str(self):
""" Return a string containg the rendered SVG.
"""
self.surface.finish()
self.surface_buffer.flush()
return self.surface_buffer.read()
def clear(self):
self.surface = None
self.output_ctx = None
self.has_bg = False
self.origin_in_inch = None
self.size_in_inch = None
self._xform_matrix = None
self._render_count = 0
if hasattr(self.surface_buffer, 'close'):
self.surface_buffer.close()
self.surface_buffer = None
def _render_layer(self, layer, settings):
self.invert = settings.invert
# Get a new clean layer to render on
self._new_render_layer(mirror=settings.mirror)
for prim in layer.primitives:
self.render(prim)
# Add layer to image
self._flatten(settings.color, settings.alpha)
def _render_line(self, line, color):
start = [pos * scale for pos, scale in zip(line.start, self.scale)]
end = [pos * scale for pos, scale in zip(line.end, self.scale)]
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if line.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
if isinstance(line.aperture, Circle):
width = line.aperture.diameter
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start)
self.ctx.line_to(*end)
self.ctx.stroke()
elif isinstance(line.aperture, Rectangle):
points = [self.scale_point(x) for x in line.vertices]
self.ctx.set_line_width(0)
self.ctx.move_to(*points[0])
for point in points[1:]:
self.ctx.line_to(*point)
self.ctx.fill()
def _render_arc(self, arc, color):
center = self.scale_point(arc.center)
start = self.scale_point(arc.start)
end = self.scale_point(arc.end)
radius = self.scale[0] * arc.radius
angle1 = arc.start_angle
angle2 = arc.end_angle
if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant':
# Make the angles slightly different otherwise Cario will draw nothing
angle2 -= 0.000000001
if isinstance(arc.aperture, Circle):
width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
else:
width = max(arc.aperture.width, arc.aperture.height, 0.001)
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if arc.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start) # You actually have to do this...
if arc.direction == 'counterclockwise':
self.ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2)
else:
self.ctx.arc_negative(*center, radius=radius,
angle1=angle1, angle2=angle2)
self.ctx.move_to(*end) # ...lame
def _render_region(self, region, color):
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if region.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*self.scale_point(region.primitives[0].start))
for prim in region.primitives:
if isinstance(prim, Line):
self.ctx.line_to(*self.scale_point(prim.end))
else:
center = self.scale_point(prim.center)
radius = self.scale[0] * prim.radius
angle1 = prim.start_angle
angle2 = prim.end_angle
if prim.direction == 'counterclockwise':
self.ctx.arc(*center, radius=radius,
angle1=angle1, angle2=angle2)
else:
self.ctx.arc_negative(*center, radius=radius,
angle1=angle1, angle2=angle2)
self.ctx.fill()
def _render_circle(self, circle, color):
center = self.scale_point(circle.position)
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if circle.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.arc(*center, radius=(circle.radius * self.scale[0]), angle1=0,
angle2=(2 * math.pi))
self.ctx.fill()
if circle.hole_diameter > 0:
# Render the center clear
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_CLEAR)
self.ctx.arc(center[0], center[1],
radius=circle.hole_radius * self.scale[0], angle1=0,
angle2=2 * math.pi)
self.ctx.fill()
def _render_rectangle(self, rectangle, color):
lower_left = self.scale_point(rectangle.lower_left)
width, height = tuple([abs(coord) for coord in
self.scale_point((rectangle.width,
rectangle.height))])
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if rectangle.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
if rectangle.rotation != 0:
self.ctx.save()
center = map(mul, rectangle.position, self.scale)
matrix = cairo.Matrix()
matrix.translate(center[0], center[1])
# For drawing, we already handles the translation
lower_left[0] = lower_left[0] - center[0]
lower_left[1] = lower_left[1] - center[1]
matrix.rotate(rectangle.rotation)
self.ctx.transform(matrix)
if rectangle.hole_diameter > 0:
self.ctx.push_group()
self.ctx.set_line_width(0)
self.ctx.rectangle(*lower_left, width=width, height=height)
self.ctx.fill()
if rectangle.hole_diameter > 0:
# Render the center clear
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_CLEAR
if rectangle.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_SOURCE)
center = map(mul, rectangle.position, self.scale)
self.ctx.arc(center[0], center[1],
radius=rectangle.hole_radius * self.scale[0], angle1=0,
angle2=2 * math.pi)
self.ctx.fill()
if rectangle.rotation != 0:
self.ctx.restore()
def _render_obround(self, obround, color):
if obround.hole_diameter > 0:
self.ctx.push_group()
self._render_circle(obround.subshapes['circle1'], color)
self._render_circle(obround.subshapes['circle2'], color)
self._render_rectangle(obround.subshapes['rectangle'], color)
if obround.hole_diameter > 0:
# Render the center clear
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_CLEAR)
center = map(mul, obround.position, self.scale)
self.ctx.arc(center[0], center[1],
radius=obround.hole_radius * self.scale[0], angle1=0,
angle2=2 * math.pi)
self.ctx.fill()
self.ctx.pop_group_to_source()
self.ctx.paint_with_alpha(1)
def _render_polygon(self, polygon, color):
# TODO Ths does not handle rotation of a polygon
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if polygon.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
if polygon.hole_radius > 0:
self.ctx.push_group()
vertices = polygon.vertices
self.ctx.set_line_width(0)
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
# Start from before the end so it is easy to iterate and make sure it is closed
self.ctx.move_to(*map(mul, vertices[-1], self.scale))
for v in vertices:
self.ctx.line_to(*map(mul, v, self.scale))
self.ctx.fill()
if polygon.hole_radius > 0:
# Render the center clear
center = tuple(map(mul, polygon.position, self.scale))
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_CLEAR
if polygon.level_polarity == 'dark'
and (not self.invert)
else cairo.OPERATOR_SOURCE)
self.ctx.set_line_width(0)
self.ctx.arc(center[0],
center[1],
polygon.hole_radius * self.scale[0], 0, 2 * math.pi)
self.ctx.fill()
def _render_drill(self, circle, color=None):
color = color if color is not None else self.drill_color
self._render_circle(circle, color)
def _render_slot(self, slot, color):
start = map(mul, slot.start, self.scale)
end = map(mul, slot.end, self.scale)
width = slot.diameter
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if slot.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start)
self.ctx.line_to(*end)
self.ctx.stroke()
def _render_amgroup(self, amgroup, color):
self.ctx.push_group()
for primitive in amgroup.primitives:
self.render(primitive)
self.ctx.pop_group_to_source()
self.ctx.paint_with_alpha(1)
def _render_test_record(self, primitive, color):
position = [pos + origin for pos, origin in
zip(primitive.position, self.origin_in_inch)]
self.ctx.select_font_face(
'monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)
self.ctx.set_font_size(13)
self._render_circle(Circle(position, 0.015), color)
self.ctx.set_operator(cairo.OPERATOR_SOURCE
if primitive.level_polarity == 'dark' and
(not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position])
self.ctx.scale(1, -1)
self.ctx.show_text(primitive.net_name)
self.ctx.scale(1, -1)
def _new_render_layer(self, color=None, mirror=False):
size_in_pixels = self.scale_point(self.size_in_inch)
matrix = copy.copy(self._xform_matrix)
layer = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1])
ctx = cairo.Context(layer)
ctx.scale(1, -1)
ctx.translate(-(self.origin_in_inch[0] * self.scale[0]),
(-self.origin_in_inch[1] * self.scale[0]) - size_in_pixels[1])
if self.invert:
ctx.set_operator(cairo.OPERATOR_OVER)
ctx.paint()
if mirror:
matrix.xx = -1.0
matrix.x0 = self.origin_in_pixels[0] + self.size_in_pixels[0]
self.ctx = ctx
self.active_layer = layer
self.active_matrix = matrix
def _flatten(self, color=None, alpha=None):
color = color if color is not None else self.color
alpha = alpha if alpha is not None else self.alpha
ptn = cairo.SurfacePattern(self.active_layer)
ptn.set_matrix(self.active_matrix)
self.output_ctx.set_source_rgba(*color, alpha=alpha)
self.output_ctx.mask(ptn)
self.ctx = None
self.active_layer = None
self.active_matrix = None
def _paint_background(self, settings=None):
color = settings.color if settings is not None else self.background_color
alpha = settings.alpha if settings is not None else 1.0
if not self.has_bg:
self.has_bg = True
self.output_ctx.set_source_rgba(*color, alpha=alpha)
self.output_ctx.paint()
def scale_point(self, point):
return tuple([coord * scale for coord, scale in zip(point, self.scale)])
|