1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .render import GerberContext
import cairo
from operator import mul
import math
import tempfile
from ..primitives import *
class GerberCairoContext(GerberContext):
def __init__(self, scale=300):
GerberContext.__init__(self)
self.scale = (scale, scale)
self.surface = None
self.ctx = None
self.bg = False
def set_bounds(self, bounds):
origin_in_inch = (bounds[0][0], bounds[1][0])
size_in_inch = (abs(bounds[0][1] - bounds[0][0]), abs(bounds[1][1] - bounds[1][0]))
size_in_pixels = map(mul, size_in_inch, self.scale)
if self.surface is None:
self.surface_buffer = tempfile.NamedTemporaryFile()
self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
self.ctx = cairo.Context(self.surface)
self.ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
self.ctx.scale(1, -1)
self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1])
# self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), -origin_in_inch[1]*self.scale[1])
def _render_line(self, line, color):
start = map(mul, line.start, self.scale)
end = map(mul, line.end, self.scale)
if isinstance(line.aperture, Circle):
width = line.aperture.diameter
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (line.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start)
self.ctx.line_to(*end)
self.ctx.stroke()
elif isinstance(line.aperture, Rectangle):
points = [tuple(map(mul, x, self.scale)) for x in line.vertices]
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (line.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.move_to(*points[0])
for point in points[1:]:
self.ctx.line_to(*point)
self.ctx.fill()
def _render_arc(self, arc, color):
center = map(mul, arc.center, self.scale)
start = map(mul, arc.start, self.scale)
end = map(mul, arc.end, self.scale)
radius = self.scale[0] * arc.radius
angle1 = arc.start_angle
angle2 = arc.end_angle
if angle1 == angle2 and arc.quadrant_mode != 'single-quadrant':
# Make the angles slightly different otherwise Cario will draw nothing
angle2 -= 0.000000001
if isinstance(arc.aperture, Circle):
width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
else:
width = max(arc.aperture.width, arc.aperture.height, 0.001)
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (arc.level_polarity == "dark" and not self.invert)else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start) # You actually have to do this...
if arc.direction == 'counterclockwise':
self.ctx.arc(center[0], center[1], radius, angle1, angle2)
else:
self.ctx.arc_negative(center[0], center[1], radius, angle1, angle2)
self.ctx.move_to(*end) # ...lame
self.ctx.stroke()
def _render_region(self, region, color):
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (region.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*tuple(map(mul, region.primitives[0].start, self.scale)))
for p in region.primitives:
if isinstance(p, Line):
self.ctx.line_to(*tuple(map(mul, p.end, self.scale)))
else:
center = map(mul, p.center, self.scale)
start = map(mul, p.start, self.scale)
end = map(mul, p.end, self.scale)
radius = self.scale[0] * p.radius
angle1 = p.start_angle
angle2 = p.end_angle
if p.direction == 'counterclockwise':
self.ctx.arc(center[0], center[1], radius, angle1, angle2)
else:
self.ctx.arc_negative(center[0], center[1], radius, angle1, angle2)
self.ctx.fill()
def _render_circle(self, circle, color):
center = tuple(map(mul, circle.position, self.scale))
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (circle.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.arc(center[0], center[1], circle.radius * self.scale[0], 0, 2 * math.pi)
self.ctx.fill()
def _render_rectangle(self, rectangle, color):
ll = map(mul, rectangle.lower_left, self.scale)
width, height = tuple(map(mul, (rectangle.width, rectangle.height), map(abs, self.scale)))
if rectangle.rotation != 0:
self.ctx.save()
center = map(mul, rectangle.position, self.scale)
matrix = cairo.Matrix()
matrix.translate(center[0], center[1])
# For drawing, we already handles the translation
ll[0] = ll[0] - center[0]
ll[1] = ll[1] - center[1]
matrix.rotate(rectangle.rotation)
self.ctx.transform(matrix)
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (rectangle.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.rectangle(ll[0], ll[1], width, height)
self.ctx.fill()
if rectangle.rotation != 0:
self.ctx.restore()
def _render_obround(self, obround, color):
self._render_circle(obround.subshapes['circle1'], color)
self._render_circle(obround.subshapes['circle2'], color)
self._render_rectangle(obround.subshapes['rectangle'], color)
def _render_polygon(self, polygon, color):
vertices = polygon.vertices
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (polygon.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(0)
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
# Start from before the end so it is easy to iterate and make sure it is closed
self.ctx.move_to(*map(mul, vertices[-1], self.scale))
for v in vertices:
self.ctx.line_to(*map(mul, v, self.scale))
self.ctx.fill()
def _render_drill(self, circle, color):
self._render_circle(circle, color)
def _render_slot(self, slot, color):
start = map(mul, slot.start, self.scale)
end = map(mul, slot.end, self.scale)
width = slot.diameter
self.ctx.set_source_rgba(color[0], color[1], color[2], self.alpha)
self.ctx.set_operator(cairo.OPERATOR_OVER if (slot.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.set_line_width(width * self.scale[0])
self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
self.ctx.move_to(*start)
self.ctx.line_to(*end)
self.ctx.stroke()
def _render_amgroup(self, amgroup, color):
for primitive in amgroup.primitives:
self.render(primitive)
def _render_test_record(self, primitive, color):
self.ctx.select_font_face('monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL)
self.ctx.set_font_size(200)
self._render_circle(Circle(primitive.position, 0.01), color)
self.ctx.set_source_rgb(*color)
self.ctx.set_operator(cairo.OPERATOR_OVER if (primitive.level_polarity == "dark" and not self.invert) else cairo.OPERATOR_CLEAR)
self.ctx.move_to(*[self.scale[0] * (coord + 0.01) for coord in primitive.position])
self.ctx.scale(1, -1)
self.ctx.show_text(primitive.net_name)
self.ctx.scale(1, -1)
def _paint_inverted_layer(self):
self.ctx.set_source_rgba(self.background_color[0], self.background_color[1], self.background_color[2])
self.ctx.set_operator(cairo.OPERATOR_OVER)
self.ctx.paint()
self.ctx.set_operator(cairo.OPERATOR_CLEAR)
def _paint_background(self):
if not self.bg:
self.bg = True
self.ctx.set_source_rgba(self.background_color[0], self.background_color[1], self.background_color[2])
self.ctx.paint()
def dump(self, filename):
is_svg = filename.lower().endswith(".svg")
if is_svg:
self.surface.finish()
self.surface_buffer.flush()
with open(filename, "w") as f:
self.surface_buffer.seek(0)
f.write(self.surface_buffer.read())
f.flush()
else:
self.surface.write_to_png(filename)
def dump_svg_str(self):
self.surface.finish()
self.surface_buffer.flush()
return self.surface_buffer.read()
|