summaryrefslogtreecommitdiff
path: root/gerber/render/cairo_backend.py
blob: df4fcf1273c1068c80f1138c3377e643eacad569 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#! /usr/bin/env python
# -*- coding: utf-8 -*-

# Copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import cairocffi as cairo
import os
import tempfile
import copy

from .render import GerberContext, RenderSettings
from .theme import THEMES
from ..primitives import *

try:
    from cStringIO import StringIO
except(ImportError):
    from io import StringIO


class GerberCairoContext(GerberContext):

    def __init__(self, scale=300):
        super(GerberCairoContext, self).__init__()
        self.scale = (scale, scale)
        self.surface = None
        self.surface_buffer = None
        self.ctx = None
        self.active_layer = None
        self.active_matrix = None
        self.output_ctx = None
        self.has_bg = False
        self.origin_in_inch = None
        self.size_in_inch = None
        self._xform_matrix = None
        self._render_count = 0

    @property
    def origin_in_pixels(self):
        return (self.scale_point(self.origin_in_inch)
                if self.origin_in_inch is not None else (0.0, 0.0))

    @property
    def size_in_pixels(self):
        return (self.scale_point(self.size_in_inch)
                if self.size_in_inch is not None else (0.0, 0.0))

    def set_bounds(self, bounds, new_surface=False):
        origin_in_inch = (bounds[0][0], bounds[1][0])
        size_in_inch = (abs(bounds[0][1] - bounds[0][0]),
                        abs(bounds[1][1] - bounds[1][0]))
        size_in_pixels = self.scale_point(size_in_inch)
        self.origin_in_inch = origin_in_inch if self.origin_in_inch is None else self.origin_in_inch
        self.size_in_inch = size_in_inch if self.size_in_inch is None else self.size_in_inch
        if (self.surface is None) or new_surface:
            self.surface_buffer = tempfile.NamedTemporaryFile()
            self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1])
            self.output_ctx = cairo.Context(self.surface)
            self.output_ctx.scale(1, -1)
            self.output_ctx.translate(-(origin_in_inch[0] * self.scale[0]),
                                      (-origin_in_inch[1] * self.scale[0]) - size_in_pixels[1])
        self._xform_matrix = cairo.Matrix(xx=1.0, yy=-1.0,
                                          x0=-self.origin_in_pixels[0],
                                          y0=self.size_in_pixels[1] + self.origin_in_pixels[1])

    def render_layer(self, layer, filename=None, settings=None, bgsettings=None,
                     verbose=False):
        if settings is None:
            settings = THEMES['default'].get(layer.layer_class, RenderSettings())
        if bgsettings is None:
            bgsettings = THEMES['default'].get('background', RenderSettings())

        if self._render_count == 0:
            if verbose:
                print('[Render]: Rendering Background.')
            self.clear()
            self.set_bounds(layer.bounds)
            self._paint_background(bgsettings)
        if verbose:
            print('[Render]: Rendering {} Layer.'.format(layer.layer_class))
        self._render_count += 1
        self._render_layer(layer, settings)
        if filename is not None:
            self.dump(filename, verbose)

    def render_layers(self, layers, filename, theme=THEMES['default'],
                      verbose=False):
        """ Render a set of layers
        """
        self.clear()
        bgsettings = theme['background']
        for layer in layers:
            settings = theme.get(layer.layer_class, RenderSettings())
            self.render_layer(layer, settings=settings, bgsettings=bgsettings,
                              verbose=verbose)
        self.dump(filename, verbose)

    def dump(self, filename, verbose=False):
        """ Save image as `filename`
        """
        is_svg = os.path.splitext(filename.lower())[1] == '.svg'
        if verbose:
            print('[Render]: Writing image to {}'.format(filename))
        if is_svg:
            self.surface.finish()
            self.surface_buffer.flush()
            with open(filename, "w") as f:
                self.surface_buffer.seek(0)
                f.write(self.surface_buffer.read())
                f.flush()
        else:
            self.surface.write_to_png(filename)

    def dump_str(self):
        """ Return a string containing the rendered image.
        """
        fobj = StringIO()
        self.surface.write_to_png(fobj)
        return fobj.getvalue()

    def dump_svg_str(self):
        """ Return a string containg the rendered SVG.
        """
        self.surface.finish()
        self.surface_buffer.flush()
        return self.surface_buffer.read()

    def clear(self):
        self.surface = None
        self.output_ctx = None
        self.has_bg = False
        self.origin_in_inch = None
        self.size_in_inch = None
        self._xform_matrix = None
        self._render_count = 0
        if hasattr(self.surface_buffer, 'close'):
            self.surface_buffer.close()
            self.surface_buffer = None

    def _render_layer(self, layer, settings):
        self.invert = settings.invert
        # Get a new clean layer to render on
        self._new_render_layer(mirror=settings.mirror)
        for prim in layer.primitives:
            self.render(prim)
        # Add layer to image
        self._paint(settings.color, settings.alpha)

    def _render_line(self, line, color):
        start = [pos * scale for pos, scale in zip(line.start, self.scale)]
        end = [pos * scale for pos, scale in zip(line.end, self.scale)]
        self.ctx.set_operator(cairo.OPERATOR_SOURCE
                              if line.level_polarity == 'dark' and
                              (not self.invert) else cairo.OPERATOR_CLEAR)
        if isinstance(line.aperture, Circle):
            width = line.aperture.diameter
            self.ctx.set_line_width(width * self.scale[0])
            self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
            self.ctx.move_to(*start)
            self.ctx.line_to(*end)
            self.ctx.stroke()
        elif isinstance(line.aperture, Rectangle):
            points = [self.scale_point(x) for x in line.vertices]
            self.ctx.set_line_width(0)
            self.ctx.move_to(*points[0])
            for point in points[1:]:
                self.ctx.line_to(*point)
            self.ctx.fill()

    def _render_arc(self, arc, color):
        center = self.scale_point(arc.center)
        start = self.scale_point(arc.start)
        end = self.scale_point(arc.end)
        radius = self.scale[0] * arc.radius
        angle1 = arc.start_angle
        angle2 = arc.end_angle
        width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001
        self.ctx.set_operator(cairo.OPERATOR_SOURCE
                              if arc.level_polarity == 'dark' and
                              (not self.invert) else cairo.OPERATOR_CLEAR)
        self.ctx.set_line_width(width * self.scale[0])
        self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
        self.ctx.move_to(*start)  # You actually have to do this...
        if arc.direction == 'counterclockwise':
            self.ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2)
        else:
            self.ctx.arc_negative(*center, radius=radius,
                                  angle1=angle1, angle2=angle2)
        self.ctx.move_to(*end)  # ...lame

    def _render_region(self, region, color):
        self.ctx.set_operator(cairo.OPERATOR_SOURCE
                              if region.level_polarity == 'dark' and
                              (not self.invert) else cairo.OPERATOR_CLEAR)
        self.ctx.set_line_width(0)
        self.ctx.set_line_cap(cairo.LINE_CAP_ROUND)
        self.ctx.move_to(*self.scale_point(region.primitives[0].start))
        for prim in region.primitives:
            if isinstance(prim, Line):
                self.ctx.line_to(*self.scale_point(prim.end))
            else:
                center = self.scale_point(prim.center)
                radius = self.scale[0] * prim.radius
                angle1 = prim.start_angle
                angle2 = prim.end_angle
                if prim.direction == 'counterclockwise':
                    self.ctx.arc(*center, radius=radius,
                                 angle1=angle1, angle2=angle2)
                else:
                    self.ctx.arc_negative(*center, radius=radius,
                                          angle1=angle1, angle2=angle2)
        self.ctx.fill()

    def _render_circle(self, circle, color):
        center = self.scale_point(circle.position)
        self.ctx.set_operator(cairo.OPERATOR_SOURCE
                              if circle.level_polarity == 'dark' and
                              (not self.invert) else cairo.OPERATOR_CLEAR)
        self.ctx.set_line_width(0)
        self.ctx.arc(*center, radius=(circle.radius * self.scale[0]), angle1=0,
                     angle2=(2 * math.pi))
        self.ctx.fill()

    def _render_rectangle(self, rectangle, color):
        lower_left = self.scale_point(rectangle.lower_left)
        width, height = tuple([abs(coord) for coord in
                               self.scale_point((rectangle.width,
                                                 rectangle.height))])
        self.ctx.set_operator(cairo.OPERATOR_SOURCE
                              if rectangle.level_polarity == 'dark' and
                              (not self.invert) else cairo.OPERATOR_CLEAR)
        self.ctx.set_line_width(0)
        self.ctx.rectangle(*lower_left, width=width, height=height)
        self.ctx.fill()

    def _render_obround(self, obround, color):
        self._render_circle(obround.subshapes['circle1'], color)
        self._render_circle(obround.subshapes['circle2'], color)
        self._render_rectangle(obround.subshapes['rectangle'], color)

    def _render_drill(self, circle, color=None):
        color = color if color is not None else self.drill_color
        self._render_circle(circle, color)

    def _render_test_record(self, primitive, color):
        position = [pos + origin for pos, origin in
                    zip(primitive.position, self.origin_in_inch)]
        self.ctx.select_font_face(
            'monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)
        self.ctx.set_font_size(13)
        self._render_circle(Circle(position, 0.015), color)
        self.ctx.set_operator(cairo.OPERATOR_SOURCE
                              if primitive.level_polarity == 'dark' and
                              (not self.invert) else cairo.OPERATOR_CLEAR)
        self.ctx.move_to(*[self.scale[0] * (coord + 0.015) for coord in position])
        self.ctx.scale(1, -1)
        self.ctx.show_text(primitive.net_name)
        self.ctx.scale(1, -1)

    def _new_render_layer(self, color=None, mirror=False):
        size_in_pixels = self.scale_point(self.size_in_inch)
        matrix = copy.copy(self._xform_matrix)
        layer = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1])
        ctx = cairo.Context(layer)
        ctx.scale(1, -1)
        ctx.translate(-(self.origin_in_inch[0] * self.scale[0]),
                      (-self.origin_in_inch[1] * self.scale[0]) - size_in_pixels[1])
        if self.invert:
            ctx.set_operator(cairo.OPERATOR_OVER)
            ctx.paint()
        if mirror:
            matrix.xx = -1.0
            matrix.x0 = self.origin_in_pixels[0] + self.size_in_pixels[0]
        self.ctx = ctx
        self.active_layer = layer
        self.active_matrix = matrix

    def _paint(self, color=None, alpha=None):
        color = color if color is not None else self.color
        alpha = alpha if alpha is not None else self.alpha
        ptn = cairo.SurfacePattern(self.active_layer)
        ptn.set_matrix(self.active_matrix)
        self.output_ctx.set_source_rgba(*color, alpha=alpha)
        self.output_ctx.mask(ptn)
        self.ctx = None
        self.active_layer = None
        self.active_matrix = None

    def _paint_background(self, settings=None):
        color = settings.color if settings is not None else self.background_color
        alpha = settings.alpha if settings is not None else 1.0
        if not self.has_bg:
            self.has_bg = True
            self.output_ctx.set_source_rgba(*color, alpha=alpha)
            self.output_ctx.paint()

    def scale_point(self, point):
        return tuple([coord * scale for coord, scale in zip(point, self.scale)])