1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from operator import sub
class Primitive(object):
""" Base class for all Cam file primitives
Parameters
---------
level_polarity : string
Polarity of the parameter. May be 'dark' or 'clear'. Dark indicates
a "positive" primitive, i.e. indicating where coppper should remain,
and clear indicates a negative primitive, such as where copper should
be removed. clear primitives are often used to create cutouts in region
pours.
rotation : float
Rotation of a primitive about its origin in degrees. Positive rotation
is counter-clockwise as viewed from the board top.
"""
def __init__(self, level_polarity='dark', rotation=0):
self.level_polarity = level_polarity
self.rotation = rotation
def bounding_box(self):
""" Calculate bounding box
will be helpful for sweep & prune during DRC clearance checks.
Return ((min x, max x), (min y, max y))
"""
pass
class Line(Primitive):
"""
"""
def __init__(self, start, end, width, **kwargs):
super(Line, self).__init__(**kwargs)
self.start = start
self.end = end
self.width = width
@property
def angle(self):
delta_x, delta_y = tuple(map(sub, self.end, self.start))
angle = math.atan2(delta_y, delta_x)
return angle
@property
def bounding_box(self):
width_2 = self.width / 2.
min_x = min(self.start[0], self.end[0]) - width_2
max_x = max(self.start[0], self.end[0]) + width_2
min_y = min(self.start[1], self.end[1]) - width_2
max_y = max(self.start[1], self.end[1]) + width_2
return ((min_x, max_x), (min_y, max_y))
class Arc(Primitive):
"""
"""
def __init__(self, start, end, center, direction, width, **kwargs):
super(Arc, self).__init__(**kwargs)
self.start = start
self.end = end
self.center = center
self.direction = direction
self.width = width
@property
def radius(self):
dy, dx = map(sub, self.start, self.center)
return math.sqrt(dy**2 + dx**2)
@property
def start_angle(self):
dy, dx = map(sub, self.start, self.center)
return math.atan2(dx, dy)
@property
def end_angle(self):
dy, dx = map(sub, self.end, self.center)
return math.atan2(dx, dy)
@property
def sweep_angle(self):
two_pi = 2 * math.pi
theta0 = (self.start_angle + two_pi) % two_pi
theta1 = (self.end_angle + two_pi) % two_pi
if self.direction == 'counterclockwise':
return abs(theta1 - theta0)
else:
theta0 += two_pi
return abs(theta0 - theta1) % two_pi
@property
def bounding_box(self):
two_pi = 2 * math.pi
theta0 = (self.start_angle + two_pi) % two_pi
theta1 = (self.end_angle + two_pi) % two_pi
points = [self.start, self.end]
if self.direction == 'counterclockwise':
# Passes through 0 degrees
if theta0 > theta1:
points.append((self.center[0] + self.radius, self.center[1]))
# Passes through 90 degrees
if theta0 <= math.pi / 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
points.append((self.center[0], self.center[1] + self.radius))
# Passes through 180 degrees
if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
points.append((self.center[0] - self.radius, self.center[1]))
# Passes through 270 degrees
if theta0 <= math.pi * 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
points.append((self.center[0], self.center[1] - self.radius ))
else:
# Passes through 0 degrees
if theta1 > theta0:
points.append((self.center[0] + self.radius, self.center[1]))
# Passes through 90 degrees
if theta1 <= math.pi / 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
points.append((self.center[0], self.center[1] + self.radius))
# Passes through 180 degrees
if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
points.append((self.center[0] - self.radius, self.center[1]))
# Passes through 270 degrees
if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
points.append((self.center[0], self.center[1] - self.radius ))
x, y = zip(*points)
min_x = min(x)
max_x = max(x)
min_y = min(y)
max_y = max(y)
return ((min_x, max_x), (min_y, max_y))
class Circle(Primitive):
"""
"""
def __init__(self, position, diameter, **kwargs):
super(Circle, self).__init__(**kwargs)
self.position = position
self.diameter = diameter
@property
def radius(self):
return self.diameter / 2.
@property
def bounding_box(self):
min_x = self.position[0] - self.radius
max_x = self.position[0] + self.radius
min_y = self.position[1] - self.radius
max_y = self.position[1] + self.radius
return ((min_x, max_x), (min_y, max_y))
@property
def stroke_width(self):
return self.diameter
class Ellipse(Primitive):
"""
"""
def __init__(self, position, width, height, **kwargs):
super(Ellipse, self).__init__(**kwargs)
self.position = position
self.width = width
self.height = height
# Axis-aligned width and height
ux = (self.width / 2.) * math.cos(math.radians(self.rotation))
uy = (self.width / 2.) * math.sin(math.radians(self.rotation))
vx = (self.height / 2.) * math.cos(math.radians(self.rotation) + (math.pi / 2.))
vy = (self.height / 2.) * math.sin(math.radians(self.rotation) + (math.pi / 2.))
self._abs_width = 2 * math.sqrt((ux * ux) + (vx * vx))
self._abs_height = 2 * math.sqrt((uy * uy) + (vy * vy))
@property
def bounding_box(self):
min_x = self.position[0] - (self._abs_width / 2.0)
max_x = self.position[0] + (self._abs_width / 2.0)
min_y = self.position[1] - (self._abs_height / 2.0)
max_y = self.position[1] + (self._abs_height / 2.0)
return ((min_x, max_x), (min_y, max_y))
class Rectangle(Primitive):
"""
"""
def __init__(self, position, width, height, **kwargs):
super(Rectangle, self).__init__(**kwargs)
self.position = position
self.width = width
self.height = height
# Axis-aligned width and height
self._abs_width = (math.cos(math.radians(self.rotation)) * self.width +
math.sin(math.radians(self.rotation)) * self.height)
self._abs_height = (math.cos(math.radians(self.rotation)) * self.height +
math.sin(math.radians(self.rotation)) * self.width)
@property
def lower_left(self):
return (self.position[0] - (self._abs_width / 2.),
self.position[1] - (self._abs_height / 2.))
@property
def upper_right(self):
return (self.position[0] + (self._abs_width / 2.),
self.position[1] + (self._abs_height / 2.))
@property
def bounding_box(self):
min_x = self.lower_left[0]
max_x = self.upper_right[0]
min_y = self.lower_left[1]
max_y = self.upper_right[1]
return ((min_x, max_x), (min_y, max_y))
class Diamond(Primitive):
"""
"""
def __init__(self, position, width, height, **kwargs):
super(Diamond, self).__init__(**kwargs)
self.position = position
self.width = width
self.height = height
# Axis-aligned width and height
self._abs_width = (math.cos(math.radians(self.rotation)) * self.width +
math.sin(math.radians(self.rotation)) * self.height)
self._abs_height = (math.cos(math.radians(self.rotation)) * self.height +
math.sin(math.radians(self.rotation)) * self.width)
@property
def lower_left(self):
return (self.position[0] - (self._abs_width / 2.),
self.position[1] - (self._abs_height / 2.))
@property
def upper_right(self):
return (self.position[0] + (self._abs_width / 2.),
self.position[1] + (self._abs_height / 2.))
@property
def bounding_box(self):
min_x = self.lower_left[0]
max_x = self.upper_right[0]
min_y = self.lower_left[1]
max_y = self.upper_right[1]
return ((min_x, max_x), (min_y, max_y))
class ChamferRectangle(Primitive):
"""
"""
def __init__(self, position, width, height, chamfer, corners, **kwargs):
super(ChamferRectangle, self).__init__(**kwargs)
self.position = position
self.width = width
self.height = height
self.chamfer = chamfer
self.corners = corners
# Axis-aligned width and height
self._abs_width = (math.cos(math.radians(self.rotation)) * self.width +
math.sin(math.radians(self.rotation)) * self.height)
self._abs_height = (math.cos(math.radians(self.rotation)) * self.height +
math.sin(math.radians(self.rotation)) * self.width)
@property
def lower_left(self):
return (self.position[0] - (self._abs_width / 2.),
self.position[1] - (self._abs_height / 2.))
@property
def upper_right(self):
return (self.position[0] + (self._abs_width / 2.),
self.position[1] + (self._abs_height / 2.))
@property
def bounding_box(self):
min_x = self.lower_left[0]
max_x = self.upper_right[0]
min_y = self.lower_left[1]
max_y = self.upper_right[1]
return ((min_x, max_x), (min_y, max_y))
class RoundRectangle(Primitive):
"""
"""
def __init__(self, position, width, height, radius, corners, **kwargs):
super(RoundRectangle, self).__init__(**kwargs)
self.position = position
self.width = width
self.height = height
self.radius = radius
self.corners = corners
# Axis-aligned width and height
self._abs_width = (math.cos(math.radians(self.rotation)) * self.width +
math.sin(math.radians(self.rotation)) * self.height)
self._abs_height = (math.cos(math.radians(self.rotation)) * self.height +
math.sin(math.radians(self.rotation)) * self.width)
@property
def lower_left(self):
return (self.position[0] - (self._abs_width / 2.),
self.position[1] - (self._abs_height / 2.))
@property
def upper_right(self):
return (self.position[0] + (self._abs_width / 2.),
self.position[1] + (self._abs_height / 2.))
@property
def bounding_box(self):
min_x = self.lower_left[0]
max_x = self.upper_right[0]
min_y = self.lower_left[1]
max_y = self.upper_right[1]
return ((min_x, max_x), (min_y, max_y))
class Obround(Primitive):
"""
"""
def __init__(self, position, width, height, **kwargs):
super(Obround, self).__init__(**kwargs)
self.position = position
self.width = width
self.height = height
@property
def orientation(self):
return 'vertical' if self.height > self.width else 'horizontal'
@property
def lower_left(self):
return (self.position[0] - (self.width / 2.),
self.position[1] - (self.height / 2.))
@property
def upper_right(self):
return (self.position[0] + (self.width / 2.),
self.position[1] + (self.height / 2.))
@property
def bounding_box(self):
min_x = self.lower_left[0]
max_x = self.upper_right[0]
min_y = self.lower_left[1]
max_y = self.upper_right[1]
return ((min_x, max_x), (min_y, max_y))
@property
def subshapes(self):
if self.orientation == 'vertical':
circle1 = Circle((self.position[0], self.position[1] +
(self.height-self.width) / 2.), self.width)
circle2 = Circle((self.position[0], self.position[1] -
(self.height-self.width) / 2.), self.width)
rect = Rectangle(self.position, self.width,
(self.height - self.width))
else:
circle1 = Circle((self.position[0] - (self.height - self.width) / 2.,
self.position[1]), self.height)
circle2 = Circle((self.position[0] - (self.height - self.width) / 2.,
self.position[1]), self.height)
rect = Rectangle(self.position, (self.width - self.height),
self.height)
return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect}
class Polygon(Primitive):
"""
"""
def __init__(self, position, sides, radius, **kwargs):
super(Polygon, self).__init__(**kwargs)
self.position = position
self.sides = sides
self.radius = radius
@property
def bounding_box(self):
min_x = self.position[0] - self.radius
max_x = self.position[0] + self.radius
min_y = self.position[1] - self.radius
max_y = self.position[1] + self.radius
return ((min_x, max_x), (min_y, max_y))
class Region(Primitive):
"""
"""
def __init__(self, points, **kwargs):
super(Region, self).__init__(**kwargs)
self.points = points
@property
def bounding_box(self):
x_list, y_list = zip(*self.points)
min_x = min(x_list)
max_x = max(x_list)
min_y = min(y_list)
max_y = max(y_list)
return ((min_x, max_x), (min_y, max_y))
class RoundButterfly(Primitive):
""" A circle with two diagonally-opposite quadrants removed
"""
def __init__(self, position, diameter, **kwargs):
super(RoundButterfly, self).__init__(**kwargs)
self.position = position
self.diameter = diameter
@property
def radius(self):
return self.diameter / 2.
@property
def bounding_box(self):
min_x = self.position[0] - self.radius
max_x = self.position[0] + self.radius
min_y = self.position[1] - self.radius
max_y = self.position[1] + self.radius
return ((min_x, max_x), (min_y, max_y))
class SquareButterfly(Primitive):
""" A square with two diagonally-opposite quadrants removed
"""
def __init__(self, position, side, **kwargs):
super(SquareButterfly, self).__init__(**kwargs)
self.position = position
self.side = side
@property
def bounding_box(self):
min_x = self.position[0] - (self.side / 2.)
max_x = self.position[0] + (self.side / 2.)
min_y = self.position[1] - (self.side / 2.)
max_y = self.position[1] + (self.side / 2.)
return ((min_x, max_x), (min_y, max_y))
class Donut(Primitive):
""" A Shape with an identical concentric shape removed from its center
"""
def __init__(self, position, shape, inner_diameter, outer_diameter, **kwargs):
super(Donut, self).__init__(**kwargs)
self.position = position
self.shape = shape
self.inner_diameter = inner_diameter
self.outer_diameter = outer_diameter
if self.shape in ('round', 'square', 'octagon'):
self.width = outer_diameter
self.height = outer_diameter
else:
# Hexagon
self.width = 0.5 * math.sqrt(3.) * outer_diameter
self.height = outer_diameter
@property
def lower_left(self):
return (self.position[0] - (self.width / 2.),
self.position[1] - (self.height / 2.))
@property
def upper_right(self):
return (self.position[0] + (self.width / 2.),
self.position[1] + (self.height / 2.))
@property
def bounding_box(self):
min_x = self.lower_left[0]
max_x = self.upper_right[0]
min_y = self.lower_left[1]
max_y = self.upper_right[1]
return ((min_x, max_x), (min_y, max_y))
class Drill(Primitive):
""" A drill hole
"""
def __init__(self, position, diameter):
super(Drill, self).__init__('dark')
self.position = position
self.diameter = diameter
@property
def radius(self):
return self.diameter / 2.
@property
def bounding_box(self):
min_x = self.position[0] - self.radius
max_x = self.position[0] + self.radius
min_y = self.position[1] - self.radius
max_y = self.position[1] + self.radius
return ((min_x, max_x), (min_y, max_y))
|