summaryrefslogtreecommitdiff
path: root/gerber/primitives.py
blob: e13e37feae7bc797a06a64ea60182cd723973567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#! /usr/bin/env python
# -*- coding: utf-8 -*-

# copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from operator import sub


class Primitive(object):

    def __init__(self, level_polarity='dark', rotation=0):
        self.level_polarity = level_polarity
        self.rotation = rotation

    def bounding_box(self):
        """ Calculate bounding box

        will be helpful for sweep & prune during DRC clearance checks.

        Return ((min x, max x), (min y, max y))
        """
        pass


class Line(Primitive):
    """
    """
    def __init__(self, start, end, width, **kwargs):
        super(Line, self).__init__(**kwargs)
        self.start = start
        self.end = end
        self.width = width

    @property
    def angle(self):
        delta_x, delta_y = tuple(map(sub, self.end, self.start))
        angle = math.atan2(delta_y, delta_x)
        return angle

    @property
    def bounding_box(self):
        width_2 = self.width / 2.
        min_x = min(self.start[0], self.end[0]) - width_2
        max_x = max(self.start[0], self.end[0]) + width_2
        min_y = min(self.start[1], self.end[1]) - width_2
        max_y = max(self.start[1], self.end[1]) + width_2
        return ((min_x, max_x), (min_y, max_y))


class Arc(Primitive):
    """
    """
    def __init__(self, start, end, center, direction, width, **kwargs):
        super(Arc, self).__init__(**kwargs)
        self.start = start
        self.end = end
        self.center = center
        self.direction = direction
        self.width = width

    @property
    def radius(self):
        dy, dx = map(sub, self.start, self.center)
        return math.sqrt(dy**2 + dx**2)

    @property
    def start_angle(self):
        dy, dx = map(sub, self.start, self.center)
        return math.atan2(dx, dy)

    @property
    def end_angle(self):
        dy, dx = map(sub, self.end, self.center)
        return math.atan2(dx, dy)

    @property
    def sweep_angle(self):
        two_pi = 2 * math.pi
        theta0 = (self.start_angle + two_pi) % two_pi
        theta1 = (self.end_angle + two_pi) % two_pi
        if self.direction == 'counterclockwise':
            return abs(theta1 - theta0)
        else:
            theta0 += two_pi
            return abs(theta0 - theta1) % two_pi

    @property
    def bounding_box(self):
        two_pi = 2 * math.pi
        theta0 = (self.start_angle + two_pi) % two_pi
        theta1 = (self.end_angle + two_pi) % two_pi
        points = [self.start, self.end]
        #Shit's about to get ugly...
        if self.direction == 'counterclockwise':
            # Passes through 0 degrees
            if theta0 > theta1:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta0 <= math.pi / 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta0 <= math.pi * 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
                points.append((self.center[0], self.center[1] - self.radius ))
        else:
             # Passes through 0 degrees
            if theta1 > theta0:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta1 <= math.pi / 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
                points.append((self.center[0], self.center[1] - self.radius ))
        x, y = zip(*points)
        min_x = min(x)
        max_x = max(x)
        min_y = min(y)
        max_y = max(y)
        return ((min_x, max_x), (min_y, max_y))


class Circle(Primitive):
    """
    """
    def __init__(self, position, diameter, **kwargs):
        super(Circle, self).__init__(**kwargs)
        self.position = position
        self.diameter = diameter

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    @property
    def stroke_width(self):
        return self.diameter


class Ellipse(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Ellipse, self).__init__(**kwargs)
        self.position = position
        self.width = width
        self.height = height

    @property
    def bounding_box(self):
        min_x = self.position[0] - (self.width / 2.0)
        max_x = self.position[0] + (self.width / 2.0)
        min_y = self.position[1] - (self.height / 2.0)
        max_y = self.position[1] + (self.height / 2.0)
        return ((min_x, max_x), (min_y, max_y))


class Rectangle(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Rectangle, self).__init__(**kwargs)
        self.position = position
        self.width = width
        self.height = height

    @property
    def lower_left(self):
        return (self.position[0] - (self.width / 2.), 
                self.position[1] - (self.height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self.width / 2.), 
                self.position[1] + (self.height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    @property
    def stroke_width(self):
        return max((self.width, self.height))


class Diamond(Primitive):
    pass


class ChamferRectangle(Primitive):
    pass


class RoundRectangle(Primitive):
    pass


class Obround(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Obround, self).__init__(**kwargs)
        self.position = position
        self.width = width
        self.height = height

    @property
    def orientation(self):
        return 'vertical' if self.height > self.width else 'horizontal'

    @property
    def lower_left(self):
        return (self.position[0] - (self.width / 2.), 
                self.position[1] - (self.height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self.width / 2.), 
                self.position[1] + (self.height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    @property
    def subshapes(self):
        if self.orientation == 'vertical':
            circle1 = Circle((self.position[0], self.position[1] +
                              (self.height-self.width) / 2.), self.width)
            circle2 = Circle((self.position[0], self.position[1] -
                              (self.height-self.width) / 2.), self.width)
            rect = Rectangle(self.position, self.width,
                            (self.height - self.width))
        else:
            circle1 = Circle((self.position[0] - (self.height - self.width) / 2.,
                              self.position[1]), self.height)
            circle2 = Circle((self.position[0] - (self.height - self.width) / 2.,
                              self.position[1]), self.height)
            rect = Rectangle(self.position, (self.width - self.height),
                            self.height)
        return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect}


class Polygon(Primitive):
    """
    """
    def __init__(self, position, sides, radius, **kwargs):
        super(Polygon, self).__init__(**kwargs)
        self.position = position
        self.sides = sides
        self.radius = radius

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))


class Region(Primitive):
    """
    """
    def __init__(self, points, **kwargs):
        super(Region, self).__init__(**kwargs)
        self.points = points

    @property
    def bounding_box(self):
        x_list, y_list = zip(*self.points)
        min_x = min(x_list)
        max_x = max(x_list)
        min_y = min(y_list)
        max_y = max(y_list)
        return ((min_x, max_x), (min_y, max_y))


class RoundButterfly(Primitive):
    """
    """
    def __init__(self, position, diameter, **kwargs):
        super(RoundButterfly, self).__init__(**kwargs)
        self.position = position
        self.diameter = diameter

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))
    
class SquareButterfly(Primitive):
    pass


class Donut(Primitive):
    pass


class Drill(Primitive):
    """
    """
    def __init__(self, position, diameter):
        super(Drill, self).__init__('dark')
        self.position = position
        self.diameter = diameter

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))