summaryrefslogtreecommitdiff
path: root/gerber/primitives.py
blob: bdd49f702f2e5c20898adaf6fe5fcb9acdba8f3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
#! /usr/bin/env python
# -*- coding: utf-8 -*-

# copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from operator import add, sub

from .utils import validate_coordinates, inch, metric


class Primitive(object):
    """ Base class for all Cam file primitives

    Parameters
    ---------
    level_polarity : string
        Polarity of the parameter. May be 'dark' or 'clear'. Dark indicates
        a "positive" primitive, i.e. indicating where coppper should remain,
        and clear indicates a negative primitive, such as where copper should
        be removed. clear primitives are often used to create cutouts in region
        pours.

    rotation : float
        Rotation of a primitive about its origin in degrees. Positive rotation
        is counter-clockwise as viewed from the board top.
    """
    def __init__(self, level_polarity='dark', rotation=0, units=None):
        self.level_polarity = level_polarity
        self.rotation = rotation
        self.units = units
        self._to_convert = list()

    def bounding_box(self):
        """ Calculate bounding box

        will be helpful for sweep & prune during DRC clearance checks.

        Return ((min x, max x), (min y, max y))
        """
        raise NotImplementedError('Bounding box calculation must be '
                                  'implemented in subclass')

    def to_inch(self):
        if self.units == 'metric':
            self.units = 'inch'
            for attr, value in [(attr, getattr(self, attr)) for attr in self._to_convert]:
                if hasattr(value, 'to_inch'):
                    value.to_inch()
                else:
                    try:
                        if len(value) > 1:
                            if isinstance(value[0], tuple):
                                setattr(self, attr, [tuple(map(inch, point)) for point in value])
                            else:
                                setattr(self, attr, tuple(map(inch, value)))
                    except:
                        if value is not None:
                            setattr(self, attr, inch(value))


    def to_metric(self):
        if self.units == 'inch':
            self.units = 'metric'
            for attr, value in [(attr, getattr(self, attr)) for attr in self._to_convert]:
                if hasattr(value, 'to_metric'):
                    value.to_metric()
                else:
                    try:
                        if len(value) > 1:
                            if isinstance(value[0], tuple):
                                setattr(self, attr, [tuple(map(metric, point)) for point in value])
                            else:
                                setattr(self, attr, tuple(map(metric, value)))
                    except:
                        if value is not None:
                            setattr(self, attr, metric(value))

    def offset(self, x_offset=0, y_offset=0):
        pass

    def __eq__(self, other):
        return self.__dict__ == other.__dict__


class Line(Primitive):
    """
    """
    def __init__(self, start, end, aperture, **kwargs):
        super(Line, self).__init__(**kwargs)
        self.start = start
        self.end = end
        self.aperture = aperture
        self._to_convert = ['start', 'end', 'aperture']

    @property
    def angle(self):
        delta_x, delta_y = tuple(map(sub, self.end, self.start))
        angle = math.atan2(delta_y, delta_x)
        return angle

    @property
    def bounding_box(self):
        if isinstance(self.aperture, Circle):
            width_2 = self.aperture.radius
            height_2 = width_2
        else:
            width_2 = self.aperture.width / 2.
            height_2 = self.aperture.height / 2.
        min_x = min(self.start[0], self.end[0]) - width_2
        max_x = max(self.start[0], self.end[0]) + width_2
        min_y = min(self.start[1], self.end[1]) - height_2
        max_y = max(self.start[1], self.end[1]) + height_2
        return ((min_x, max_x), (min_y, max_y))

    @property
    def vertices(self):
        if not isinstance(self.aperture, Rectangle):
            return None
        else:
            start = self.start
            end = self.end
            width = self.aperture.width
            height = self.aperture.height

            # Find all the corners of the start and end position
            start_ll = (start[0] - (width / 2.),
                        start[1] - (height / 2.))
            start_lr = (start[0] + (width / 2.),
                        start[1] - (height / 2.))
            start_ul = (start[0] - (width / 2.),
                        start[1] + (height / 2.))
            start_ur = (start[0] + (width / 2.),
                        start[1] + (height / 2.))
            end_ll = (end[0] - (width / 2.),
                      end[1] - (height / 2.))
            end_lr = (end[0] + (width / 2.),
                      end[1] - (height / 2.))
            end_ul = (end[0] - (width / 2.),
                      end[1] + (height / 2.))
            end_ur = (end[0] + (width / 2.),
                      end[1] + (height / 2.))

            if end[0] == start[0] and end[1] == start[1]:
                return (start_ll, start_lr, start_ur, start_ul)
            elif end[0] == start[0] and end[1] > start[1]:
                return (start_ll, start_lr, end_ur, end_ul)
            elif end[0] > start[0] and end[1] > start[1]:
                return (start_ll, start_lr, end_lr, end_ur, end_ul, start_ul)
            elif end[0] > start[0] and end[1] == start[1]:
                return (start_ll, end_lr, end_ur, start_ul)
            elif end[0] > start[0] and end[1] < start[1]:
                return (start_ll, end_ll, end_lr, end_ur, start_ur, start_ul)
            elif end[0] == start[0] and end[1] < start[1]:
                return (end_ll, end_lr, start_ur, start_ul)
            elif end[0] < start[0] and end[1] < start[1]:
                return (end_ll, end_lr, start_lr, start_ur, start_ul, end_ul)
            elif end[0] < start[0] and end[1] == start[1]:
                return (end_ll, start_lr, start_ur, end_ul)
            elif end[0] < start[0] and end[1] > start[1]:
                return (start_ll, start_lr, start_ur, end_ur, end_ul, end_ll)


    def offset(self, x_offset=0, y_offset=0):
        self.start = tuple(map(add, self.start, (x_offset, y_offset)))
        self.end = tuple(map(add, self.end, (x_offset, y_offset)))


class Arc(Primitive):
    """
    """
    def __init__(self, start, end, center, direction, aperture, **kwargs):
        super(Arc, self).__init__(**kwargs)
        self.start = start
        self.end = end
        self.center = center
        self.direction = direction
        self.aperture = aperture
        self._to_convert = ['start', 'end', 'center', 'aperture']

    @property
    def radius(self):
        dy, dx = map(sub, self.start, self.center)
        return math.sqrt(dy**2 + dx**2)

    @property
    def start_angle(self):
        dy, dx = map(sub, self.start, self.center)
        return math.atan2(dx, dy)

    @property
    def end_angle(self):
        dy, dx = map(sub, self.end, self.center)
        return math.atan2(dx, dy)

    @property
    def sweep_angle(self):
        two_pi = 2 * math.pi
        theta0 = (self.start_angle + two_pi) % two_pi
        theta1 = (self.end_angle + two_pi) % two_pi
        if self.direction == 'counterclockwise':
            return abs(theta1 - theta0)
        else:
            theta0 += two_pi
            return abs(theta0 - theta1) % two_pi

    @property
    def bounding_box(self):
        two_pi = 2 * math.pi
        theta0 = (self.start_angle + two_pi) % two_pi
        theta1 = (self.end_angle + two_pi) % two_pi
        points = [self.start, self.end]
        if self.direction == 'counterclockwise':
            # Passes through 0 degrees
            if theta0 > theta1:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta0 <= math.pi / 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta0 <= math.pi * 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
                points.append((self.center[0], self.center[1] - self.radius ))
        else:
             # Passes through 0 degrees
            if theta1 > theta0:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta1 <= math.pi / 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
                points.append((self.center[0], self.center[1] - self.radius ))
        x, y = zip(*points)
        min_x = min(x) - self.aperture.radius
        max_x = max(x) + self.aperture.radius
        min_y = min(y) - self.aperture.radius
        max_y = max(y) + self.aperture.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.start = tuple(map(add, self.start, (x_offset, y_offset)))
        self.end = tuple(map(add, self.end, (x_offset, y_offset)))
        self.center = tuple(map(add, self.center, (x_offset, y_offset)))


class Circle(Primitive):
    """
    """
    def __init__(self, position, diameter, **kwargs):
        super(Circle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.diameter = diameter
        self._to_convert = ['position', 'diameter']

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class Ellipse(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Ellipse, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self._to_convert = ['position', 'width', 'height']


    @property
    def bounding_box(self):
        min_x = self.position[0] - (self._abs_width / 2.0)
        max_x = self.position[0] + (self._abs_width / 2.0)
        min_y = self.position[1] - (self._abs_height / 2.0)
        max_y = self.position[1] + (self._abs_height / 2.0)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        ux = (self.width / 2.) * math.cos(math.radians(self.rotation))
        vx = (self.height / 2.) * math.cos(math.radians(self.rotation) + (math.pi / 2.))
        return 2 * math.sqrt((ux * ux) + (vx * vx))
    
    @property
    def _abs_height(self):
        uy = (self.width / 2.) * math.sin(math.radians(self.rotation))
        vy = (self.height / 2.) * math.sin(math.radians(self.rotation) + (math.pi / 2.))
        return 2 * math.sqrt((uy * uy) + (vy * vy))


class Rectangle(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Rectangle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self._to_convert = ['position', 'width', 'height']
        

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)
        

class Diamond(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Diamond, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self._to_convert = ['position', 'width', 'height']

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)


class ChamferRectangle(Primitive):
    """
    """
    def __init__(self, position, width, height, chamfer, corners, **kwargs):
        super(ChamferRectangle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self.chamfer = chamfer
        self.corners = corners
        self._to_convert = ['position', 'width', 'height', 'chamfer']

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)

class RoundRectangle(Primitive):
    """
    """
    def __init__(self, position, width, height, radius, corners, **kwargs):
        super(RoundRectangle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self.radius = radius
        self.corners = corners
        self._to_convert = ['position', 'width', 'height', 'radius']

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)

class Obround(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Obround, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self._to_convert = ['position', 'width', 'height']

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def orientation(self):
        return 'vertical' if self.height > self.width else 'horizontal'

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    @property
    def subshapes(self):
        if self.orientation == 'vertical':
            circle1 = Circle((self.position[0], self.position[1] +
                              (self.height-self.width) / 2.), self.width)
            circle2 = Circle((self.position[0], self.position[1] -
                              (self.height-self.width) / 2.), self.width)
            rect = Rectangle(self.position, self.width,
                            (self.height - self.width))
        else:
            circle1 = Circle((self.position[0] - (self.height - self.width) / 2.,
                              self.position[1]), self.height)
            circle2 = Circle((self.position[0] + (self.height - self.width) / 2.,
                              self.position[1]), self.height)
            rect = Rectangle(self.position, (self.width - self.height),
                            self.height)
        return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect}

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)

class Polygon(Primitive):
    """
    """
    def __init__(self, position, sides, radius, **kwargs):
        super(Polygon, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.sides = sides
        self.radius = radius
        self._to_convert = ['position', 'radius']

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class Region(Primitive):
    """
    """
    def __init__(self, points, **kwargs):
        super(Region, self).__init__(**kwargs)
        self.points = points
        self._to_convert = ['points']

    @property
    def bounding_box(self):
        x_list, y_list = zip(*self.points)
        min_x = min(x_list)
        max_x = max(x_list)
        min_y = min(y_list)
        max_y = max(y_list)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.points = [tuple(map(add, point, (x_offset, y_offset)))
                       for point in self.points]


class RoundButterfly(Primitive):
    """ A circle with two diagonally-opposite quadrants removed
    """
    def __init__(self, position, diameter, **kwargs):
        super(RoundButterfly, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.diameter = diameter
        self._to_convert = ['position', 'diameter']

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class SquareButterfly(Primitive):
    """ A square with two diagonally-opposite quadrants removed
    """
    def __init__(self, position, side, **kwargs):
        super(SquareButterfly, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.side = side
        self._to_convert = ['position', 'side']


    @property
    def bounding_box(self):
        min_x = self.position[0] - (self.side / 2.)
        max_x = self.position[0] + (self.side / 2.)
        min_y = self.position[1] - (self.side / 2.)
        max_y = self.position[1] + (self.side / 2.)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class Donut(Primitive):
    """ A Shape with an identical concentric shape removed from its center
    """
    def __init__(self, position, shape, inner_diameter, outer_diameter, **kwargs):
        super(Donut, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        if shape not in ('round', 'square', 'hexagon', 'octagon'):
            raise ValueError('Valid shapes are round, square, hexagon or octagon')
        self.shape = shape
        if inner_diameter >= outer_diameter:
            raise ValueError('Outer diameter must be larger than inner diameter.')
        self.inner_diameter = inner_diameter
        self.outer_diameter = outer_diameter
        if self.shape in ('round', 'square', 'octagon'):
            self.width = outer_diameter
            self.height = outer_diameter
        else:
            # Hexagon
            self.width = 0.5 * math.sqrt(3.) * outer_diameter
            self.height = outer_diameter
        self._to_convert = ['position', 'width', 'height', 'inner_diameter', 'outer_diameter']

    @property
    def lower_left(self):
        return (self.position[0] - (self.width / 2.),
                self.position[1] - (self.height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self.width / 2.),
                self.position[1] + (self.height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class SquareRoundDonut(Primitive):
    """ A Square with a circular cutout in the center
    """
    def __init__(self, position, inner_diameter, outer_diameter, **kwargs):
        super(SquareRoundDonut, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        if inner_diameter >= outer_diameter:
            raise ValueError('Outer diameter must be larger than inner diameter.')
        self.inner_diameter = inner_diameter
        self.outer_diameter = outer_diameter
        self._to_convert = ['position', 'inner_diameter', 'outer_diameter']

    @property
    def lower_left(self):
        return tuple([c - self.outer_diameter / 2. for c in self.position])

    @property
    def upper_right(self):
        return tuple([c + self.outer_diameter / 2. for c in self.position])

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class Drill(Primitive):
    """ A drill hole
    """
    def __init__(self, position, diameter, **kwargs):
        super(Drill, self).__init__('dark', **kwargs)
        validate_coordinates(position)
        self.position = position
        self.diameter = diameter
        self._to_convert = ['position', 'diameter']

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

class TestRecord(Primitive):
    """ Netlist Test record
    """
    def __init__(self, position, net_name, layer, **kwargs):
        super(TestRecord, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.net_name = net_name
        self.layer = layer