summaryrefslogtreecommitdiff
path: root/gerber/primitives.py
blob: b8ee344dc6ba1650b7c71e17889cc43c1aec7867 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
#! /usr/bin/env python
# -*- coding: utf-8 -*-

# copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be>

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from operator import add, sub

from .utils import validate_coordinates, inch, metric, rotate_point, nearly_equal


class Primitive(object):
    """ Base class for all Cam file primitives

    Parameters
    ---------
    level_polarity : string
        Polarity of the parameter. May be 'dark' or 'clear'. Dark indicates
        a "positive" primitive, i.e. indicating where coppper should remain,
        and clear indicates a negative primitive, such as where copper should
        be removed. clear primitives are often used to create cutouts in region
        pours.

    rotation : float
        Rotation of a primitive about its origin in degrees. Positive rotation
        is counter-clockwise as viewed from the board top.
    """
    def __init__(self, level_polarity='dark', rotation=0, units=None, id=None, statement_id=None):
        self.level_polarity = level_polarity
        self.rotation = rotation
        self.units = units
        self._to_convert = list()
        self.id = id
        self.statement_id = statement_id
        
    @property
    def flashed(self):
        '''Is this a flashed primitive'''
        
        raise NotImplementedError('Is flashed must be '
                                  'implemented in subclass')

    @property
    def bounding_box(self):
        """ Calculate bounding box

        will be helpful for sweep & prune during DRC clearance checks.

        Return ((min x, max x), (min y, max y))
        """
        raise NotImplementedError('Bounding box calculation must be '
                                  'implemented in subclass')
        
    @property
    def bounding_box_no_aperture(self):
        """ Calculate bouxing box without considering the aperture
        
        for most objects, this is the same as the bounding_box, but is different for
        Lines and Arcs (which are not flashed)
        
        Return ((min x, max x), (min y, max y))
        """
        return self.bounding_box

    def to_inch(self):
        if self.units == 'metric':
            self.units = 'inch'
            for attr, value in [(attr, getattr(self, attr)) for attr in self._to_convert]:
                if hasattr(value, 'to_inch'):
                    value.to_inch()
                else:
                    try:
                        if len(value) > 1:
                            if hasattr(value[0], 'to_inch'):
                                for v in value:
                                    v.to_inch()
                            elif isinstance(value[0], tuple):
                                setattr(self, attr, [tuple(map(inch, point)) for point in value])
                            else:
                                setattr(self, attr, tuple(map(inch, value)))
                    except:
                        if value is not None:
                            setattr(self, attr, inch(value))


    def to_metric(self):
        if self.units == 'inch':
            self.units = 'metric'
            for attr, value in [(attr, getattr(self, attr)) for attr in self._to_convert]:
                if hasattr(value, 'to_metric'):
                    value.to_metric()
                else:
                    try:
                        if len(value) > 1:
                            if hasattr(value[0], 'to_metric'):
                                for v in value:
                                    v.to_metric()
                            elif isinstance(value[0], tuple):
                                setattr(self, attr, [tuple(map(metric, point)) for point in value])
                            else:
                                setattr(self, attr, tuple(map(metric, value)))
                    except:
                        if value is not None:
                            setattr(self, attr, metric(value))

    def offset(self, x_offset=0, y_offset=0):
        raise NotImplementedError('The offset member must be implemented')

    def __eq__(self, other):
        return self.__dict__ == other.__dict__
    
    def to_statement(self):
        pass


class Line(Primitive):
    """
    """
    def __init__(self, start, end, aperture, **kwargs):
        super(Line, self).__init__(**kwargs)
        self.start = start
        self.end = end
        self.aperture = aperture
        self._to_convert = ['start', 'end', 'aperture']
    
    @property 
    def flashed(self):
        return False

    @property
    def angle(self):
        delta_x, delta_y = tuple(map(sub, self.end, self.start))
        angle = math.atan2(delta_y, delta_x)
        return angle

    @property
    def bounding_box(self):
        if isinstance(self.aperture, Circle):
            width_2 = self.aperture.radius
            height_2 = width_2
        else:
            width_2 = self.aperture.width / 2.
            height_2 = self.aperture.height / 2.
        min_x = min(self.start[0], self.end[0]) - width_2
        max_x = max(self.start[0], self.end[0]) + width_2
        min_y = min(self.start[1], self.end[1]) - height_2
        max_y = max(self.start[1], self.end[1]) + height_2
        return ((min_x, max_x), (min_y, max_y))
    
    @property
    def bounding_box_no_aperture(self):
        '''Gets the bounding box without the aperture'''
        min_x = min(self.start[0], self.end[0])
        max_x = max(self.start[0], self.end[0])
        min_y = min(self.start[1], self.end[1])
        max_y = max(self.start[1], self.end[1])
        return ((min_x, max_x), (min_y, max_y))

    @property
    def vertices(self):
        if not isinstance(self.aperture, Rectangle):
            return None
        else:
            start = self.start
            end = self.end
            width = self.aperture.width
            height = self.aperture.height

            # Find all the corners of the start and end position
            start_ll = (start[0] - (width / 2.),
                        start[1] - (height / 2.))
            start_lr = (start[0] + (width / 2.),
                        start[1] - (height / 2.))
            start_ul = (start[0] - (width / 2.),
                        start[1] + (height / 2.))
            start_ur = (start[0] + (width / 2.),
                        start[1] + (height / 2.))
            end_ll = (end[0] - (width / 2.),
                      end[1] - (height / 2.))
            end_lr = (end[0] + (width / 2.),
                      end[1] - (height / 2.))
            end_ul = (end[0] - (width / 2.),
                      end[1] + (height / 2.))
            end_ur = (end[0] + (width / 2.),
                      end[1] + (height / 2.))

            if end[0] == start[0] and end[1] == start[1]:
                return (start_ll, start_lr, start_ur, start_ul)
            elif end[0] == start[0] and end[1] > start[1]:
                return (start_ll, start_lr, end_ur, end_ul)
            elif end[0] > start[0] and end[1] > start[1]:
                return (start_ll, start_lr, end_lr, end_ur, end_ul, start_ul)
            elif end[0] > start[0] and end[1] == start[1]:
                return (start_ll, end_lr, end_ur, start_ul)
            elif end[0] > start[0] and end[1] < start[1]:
                return (start_ll, end_ll, end_lr, end_ur, start_ur, start_ul)
            elif end[0] == start[0] and end[1] < start[1]:
                return (end_ll, end_lr, start_ur, start_ul)
            elif end[0] < start[0] and end[1] < start[1]:
                return (end_ll, end_lr, start_lr, start_ur, start_ul, end_ul)
            elif end[0] < start[0] and end[1] == start[1]:
                return (end_ll, start_lr, start_ur, end_ul)
            elif end[0] < start[0] and end[1] > start[1]:
                return (start_ll, start_lr, start_ur, end_ur, end_ul, end_ll)


    def offset(self, x_offset=0, y_offset=0):
        self.start = tuple(map(add, self.start, (x_offset, y_offset)))
        self.end = tuple(map(add, self.end, (x_offset, y_offset)))
        
    def equivalent(self, other, offset):
        
        if not isinstance(other, Line):
            return False
        
        equiv_start = tuple(map(add, other.start, offset))
        equiv_end = tuple(map(add, other.end, offset))

        return nearly_equal(self.start, equiv_start) and nearly_equal(self.end, equiv_end)

class Arc(Primitive):
    """
    """
    def __init__(self, start, end, center, direction, aperture, quadrant_mode, **kwargs):
        super(Arc, self).__init__(**kwargs)
        self.start = start
        self.end = end
        self.center = center
        self.direction = direction
        self.aperture = aperture
        self.quadrant_mode = quadrant_mode
        self._to_convert = ['start', 'end', 'center', 'aperture']

    @property 
    def flashed(self):
        return False
    
    @property
    def radius(self):
        dy, dx = map(sub, self.start, self.center)
        return math.sqrt(dy**2 + dx**2)

    @property
    def start_angle(self):
        dy, dx = map(sub, self.start, self.center)
        return math.atan2(dx, dy)

    @property
    def end_angle(self):
        dy, dx = map(sub, self.end, self.center)
        return math.atan2(dx, dy)

    @property
    def sweep_angle(self):
        two_pi = 2 * math.pi
        theta0 = (self.start_angle + two_pi) % two_pi
        theta1 = (self.end_angle + two_pi) % two_pi
        if self.direction == 'counterclockwise':
            return abs(theta1 - theta0)
        else:
            theta0 += two_pi
            return abs(theta0 - theta1) % two_pi

    @property
    def bounding_box(self):
        two_pi = 2 * math.pi
        theta0 = (self.start_angle + two_pi) % two_pi
        theta1 = (self.end_angle + two_pi) % two_pi
        points = [self.start, self.end]
        if self.direction == 'counterclockwise':
            # Passes through 0 degrees
            if theta0 > theta1:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta0 <= math.pi / 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta0 <= math.pi * 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
                points.append((self.center[0], self.center[1] - self.radius ))
        else:
             # Passes through 0 degrees
            if theta1 > theta0:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta1 <= math.pi / 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
                points.append((self.center[0], self.center[1] - self.radius ))
        x, y = zip(*points)
        
        if isinstance(self.aperture, Circle):
            radius = self.aperture.radius
        else:
            # TODO this is actually not valid, but files contain it
            width = self.aperture.width
            height = self.aperture.height
            radius = max(width, height)
            
        min_x = min(x) - radius
        max_x = max(x) + radius
        min_y = min(y) - radius
        max_y = max(y) + radius
        return ((min_x, max_x), (min_y, max_y))
    
    @property
    def bounding_box_no_aperture(self):
        '''Gets the bounding box without considering the aperture'''
        two_pi = 2 * math.pi
        theta0 = (self.start_angle + two_pi) % two_pi
        theta1 = (self.end_angle + two_pi) % two_pi
        points = [self.start, self.end]
        if self.direction == 'counterclockwise':
            # Passes through 0 degrees
            if theta0 > theta1:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta0 <= math.pi / 2. and (theta1 >= math.pi / 2. or theta1 < theta0):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta0 <= math.pi and (theta1 >= math.pi or theta1 < theta0):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta0 <= math.pi * 1.5 and (theta1 >= math.pi * 1.5 or theta1 < theta0):
                points.append((self.center[0], self.center[1] - self.radius ))
        else:
             # Passes through 0 degrees
            if theta1 > theta0:
                points.append((self.center[0] + self.radius, self.center[1]))
            # Passes through 90 degrees
            if theta1 <= math.pi / 2. and (theta0 >= math.pi / 2. or theta0 < theta1):
                points.append((self.center[0], self.center[1] + self.radius))
            # Passes through 180 degrees
            if theta1 <= math.pi and (theta0 >= math.pi or theta0 < theta1):
                points.append((self.center[0] - self.radius, self.center[1]))
            # Passes through 270 degrees
            if theta1 <= math.pi * 1.5 and (theta0 >= math.pi * 1.5 or theta0 < theta1):
                points.append((self.center[0], self.center[1] - self.radius ))
        x, y = zip(*points)
            
        min_x = min(x)
        max_x = max(x)
        min_y = min(y)
        max_y = max(y)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.start = tuple(map(add, self.start, (x_offset, y_offset)))
        self.end = tuple(map(add, self.end, (x_offset, y_offset)))
        self.center = tuple(map(add, self.center, (x_offset, y_offset)))


class Circle(Primitive):
    """
    """
    def __init__(self, position, diameter, hole_diameter = 0, **kwargs):
        super(Circle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.diameter = diameter
        self.hole_diameter = hole_diameter
        self._to_convert = ['position', 'diameter', 'hole_diameter']

    @property 
    def flashed(self):
        return True
    
    @property
    def radius(self):
        return self.diameter / 2.
    
    @property
    def hole_radius(self):
        return self.hole_diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))
        
    def equivalent(self, other, offset):
        '''Is this the same as the other circle, ignoring the offiset?'''

        if not isinstance(other, Circle):
            return False
        
        if self.diameter != other.diameter or self.hole_diameter != other.hole_diameter:
            return False
        
        equiv_position = tuple(map(add, other.position, offset))

        return nearly_equal(self.position, equiv_position)


class Ellipse(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Ellipse, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self._to_convert = ['position', 'width', 'height']

    @property 
    def flashed(self):
        return True

    @property
    def bounding_box(self):
        min_x = self.position[0] - (self._abs_width / 2.0)
        max_x = self.position[0] + (self._abs_width / 2.0)
        min_y = self.position[1] - (self._abs_height / 2.0)
        max_y = self.position[1] + (self._abs_height / 2.0)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        ux = (self.width / 2.) * math.cos(math.radians(self.rotation))
        vx = (self.height / 2.) * math.cos(math.radians(self.rotation) + (math.pi / 2.))
        return 2 * math.sqrt((ux * ux) + (vx * vx))
    
    @property
    def _abs_height(self):
        uy = (self.width / 2.) * math.sin(math.radians(self.rotation))
        vy = (self.height / 2.) * math.sin(math.radians(self.rotation) + (math.pi / 2.))
        return 2 * math.sqrt((uy * uy) + (vy * vy))


class Rectangle(Primitive):
    """
    When rotated, the rotation is about the center point.
    
    Only aperture macro generated Rectangle objects can be rotated. If you aren't in a AMGroup,
    then you don't need to worry about rotation
    """
    def __init__(self, position, width, height, hole_diameter=0, **kwargs):
        super(Rectangle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self.hole_diameter = hole_diameter
        self._to_convert = ['position', 'width', 'height', 'hole_diameter']
        
    @property 
    def flashed(self):
        return True
    
    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))
        
    @property
    def hole_radius(self):
        """The radius of the hole. If there is no hole, returns 0"""
        return self.hole_diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)
        
    def equivalent(self, other, offset):
        """Is this the same as the other rect, ignoring the offset?"""

        if not isinstance(other, Rectangle):
            return False
        
        if self.width != other.width or self.height != other.height or self.rotation != other.rotation or self.hole_diameter != other.hole_diameter:
            return False
        
        equiv_position = tuple(map(add, other.position, offset))

        return nearly_equal(self.position, equiv_position)


class Diamond(Primitive):
    """
    """
    def __init__(self, position, width, height, **kwargs):
        super(Diamond, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self._to_convert = ['position', 'width', 'height']
        
    @property 
    def flashed(self):
        return True

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)


class ChamferRectangle(Primitive):
    """
    """
    def __init__(self, position, width, height, chamfer, corners, **kwargs):
        super(ChamferRectangle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self.chamfer = chamfer
        self.corners = corners
        self._to_convert = ['position', 'width', 'height', 'chamfer']
        
    @property 
    def flashed(self):
        return True

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)

class RoundRectangle(Primitive):
    """
    """
    def __init__(self, position, width, height, radius, corners, **kwargs):
        super(RoundRectangle, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self.radius = radius
        self.corners = corners
        self._to_convert = ['position', 'width', 'height', 'radius']
        
    @property 
    def flashed(self):
        return True

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)

class Obround(Primitive):
    """
    """
    def __init__(self, position, width, height, hole_diameter=0, **kwargs):
        super(Obround, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.width = width
        self.height = height
        self.hole_diameter = hole_diameter
        self._to_convert = ['position', 'width', 'height', 'hole_diameter']
        
    @property 
    def flashed(self):
        return True

    @property
    def lower_left(self):
        return (self.position[0] - (self._abs_width / 2.),
                self.position[1] - (self._abs_height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self._abs_width / 2.),
                self.position[1] + (self._abs_height / 2.))
        
    @property
    def hole_radius(self):
        """The radius of the hole. If there is no hole, returns 0"""
        return self.hole_diameter / 2.

    @property
    def orientation(self):
        return 'vertical' if self.height > self.width else 'horizontal'

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    @property
    def subshapes(self):
        if self.orientation == 'vertical':
            circle1 = Circle((self.position[0], self.position[1] +
                              (self.height-self.width) / 2.), self.width)
            circle2 = Circle((self.position[0], self.position[1] -
                              (self.height-self.width) / 2.), self.width)
            rect = Rectangle(self.position, self.width,
                            (self.height - self.width))
        else:
            circle1 = Circle((self.position[0] - (self.height - self.width) / 2.,
                              self.position[1]), self.height)
            circle2 = Circle((self.position[0] + (self.height - self.width) / 2.,
                              self.position[1]), self.height)
            rect = Rectangle(self.position, (self.width - self.height),
                            self.height)
        return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect}

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))

    @property
    def _abs_width(self):
        return (math.cos(math.radians(self.rotation)) * self.width +
                math.sin(math.radians(self.rotation)) * self.height)
    @property
    def _abs_height(self):
        return (math.cos(math.radians(self.rotation)) * self.height +
                math.sin(math.radians(self.rotation)) * self.width)

class Polygon(Primitive):
    """
    Polygon flash defined by a set number of sides.
    """
    def __init__(self, position, sides, radius, hole_radius, **kwargs):
        super(Polygon, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.sides = sides
        self.radius = radius
        self.hole_radius = hole_radius
        self._to_convert = ['position', 'radius']
        
    @property 
    def flashed(self):
        return True
    
    @property
    def diameter(self):
        return self.radius * 2

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))
        
    @property
    def vertices(self):
        
        offset = self.rotation
        da = 360.0 / self.sides
        
        points = []
        for i in xrange(self.sides):
            points.append(rotate_point((self.position[0] + self.radius, self.position[1]), offset + da * i, self.position))
        
        return points
    
    def equivalent(self, other, offset):
        """
        Is this the outline the same as the other, ignoring the position offset?
        """
        
        # Quick check if it even makes sense to compare them
        if type(self) != type(other) or self.sides != other.sides or self.radius != other.radius:
            return False

        equiv_pos = tuple(map(add, other.position, offset))

        return nearly_equal(self.position, equiv_pos)


class AMGroup(Primitive):
    """
    """
    def __init__(self, amprimitives, stmt = None, **kwargs):
        """
        
        stmt : The original statment that generated this, since it is really hard to re-generate from primitives
        """
        super(AMGroup, self).__init__(**kwargs)
        
        self.primitives = []
        for amprim in amprimitives:
            prim = amprim.to_primitive(self.units)
            if isinstance(prim, list):
                for p in prim:
                    self.primitives.append(p)
            elif prim:
               self.primitives.append(prim)
        self._position = None
        self._to_convert = ['_position', 'primitives']
        self.stmt = stmt
        
    def to_inch(self):
        if self.units == 'metric':
            super(AMGroup, self).to_inch()
            
            # If we also have a stmt, convert that too
            if self.stmt:
                self.stmt.to_inch()


    def to_metric(self):
        if self.units == 'inch':
            super(AMGroup, self).to_metric()
            
            # If we also have a stmt, convert that too
            if self.stmt:
                self.stmt.to_metric()
        
    @property
    def flashed(self):
        return True
    
    @property
    def bounding_box(self):
        xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
        minx, maxx = zip(*xlims)
        miny, maxy = zip(*ylims)
        min_x = min(minx)
        max_x = max(maxx)
        min_y = min(miny)
        max_y = max(maxy)
        return ((min_x, max_x), (min_y, max_y))
    
    @property
    def position(self):
        return self._position
    
    def offset(self, x_offset=0, y_offset=0):
        self._position = tuple(map(add, self._position, (x_offset, y_offset)))
        
        for primitive in self.primitives:
            primitive.offset(x_offset, y_offset)
    
    @position.setter
    def position(self, new_pos):
        '''
        Sets the position of the AMGroup.
        This offset all of the objects by the specified distance.
        '''
        
        if self._position:
            dx = new_pos[0] - self._position[0]
            dy = new_pos[1] - self._position[1]
        else:
            dx = new_pos[0]
            dy = new_pos[1]
        
        for primitive in self.primitives:
            primitive.offset(dx, dy)
            
        self._position = new_pos
        
    def equivalent(self, other, offset):
        '''
        Is this the macro group the same as the other, ignoring the position offset?
        '''
        
        if len(self.primitives) != len(other.primitives):
            return False
        
        # We know they have the same number of primitives, so now check them all
        for i in range(0, len(self.primitives)):
            if not self.primitives[i].equivalent(other.primitives[i], offset):
                return False
            
        # If we didn't find any differences, then they are the same
        return True

class Outline(Primitive):
    """
    Outlines only exist as the rendering for a apeture macro outline.
    They don't exist outside of AMGroup objects
    """
    def __init__(self, primitives, **kwargs):
        super(Outline, self).__init__(**kwargs)
        self.primitives = primitives
        self._to_convert = ['primitives']
        
        if self.primitives[0].start != self.primitives[-1].end:
            raise ValueError('Outline must be closed')
        
    @property 
    def flashed(self):
        return True

    @property
    def bounding_box(self):
        xlims, ylims = zip(*[p.bounding_box for p in self.primitives])
        minx, maxx = zip(*xlims)
        miny, maxy = zip(*ylims)
        min_x = min(minx)
        max_x = max(maxx)
        min_y = min(miny)
        max_y = max(maxy)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        for p in self.primitives:
            p.offset(x_offset, y_offset)

    @property
    def width(self):
        bounding_box = self.bounding_box()
        return bounding_box[0][1] - bounding_box[0][0]
    
    @property
    def width(self):
        bounding_box = self.bounding_box()
        return bounding_box[1][1] - bounding_box[1][0]

    def equivalent(self, other, offset):
        '''
        Is this the outline the same as the other, ignoring the position offset?
        '''
        
        # Quick check if it even makes sense to compare them
        if type(self) != type(other) or len(self.primitives) != len(other.primitives):
            return False
        
        for i in range(0, len(self.primitives)):
            if not self.primitives[i].equivalent(other.primitives[i], offset):
                return False
        
        return True

class Region(Primitive):
    """
    """
    def __init__(self, primitives, **kwargs):
        super(Region, self).__init__(**kwargs)
        self.primitives = primitives
        self._to_convert = ['primitives']
        
    @property 
    def flashed(self):
        return False

    @property
    def bounding_box(self):
        xlims, ylims = zip(*[p.bounding_box_no_aperture for p in self.primitives])
        minx, maxx = zip(*xlims)
        miny, maxy = zip(*ylims)
        min_x = min(minx)
        max_x = max(maxx)
        min_y = min(miny)
        max_y = max(maxy)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        for p in self.primitives:
            p.offset(x_offset, y_offset)


class RoundButterfly(Primitive):
    """ A circle with two diagonally-opposite quadrants removed
    """
    def __init__(self, position, diameter, **kwargs):
        super(RoundButterfly, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.diameter = diameter
        self._to_convert = ['position', 'diameter']
        
    @property 
    def flashed(self):
        return True

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class SquareButterfly(Primitive):
    """ A square with two diagonally-opposite quadrants removed
    """
    def __init__(self, position, side, **kwargs):
        super(SquareButterfly, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.side = side
        self._to_convert = ['position', 'side']
        
    @property 
    def flashed(self):
        return True

    @property
    def bounding_box(self):
        min_x = self.position[0] - (self.side / 2.)
        max_x = self.position[0] + (self.side / 2.)
        min_y = self.position[1] - (self.side / 2.)
        max_y = self.position[1] + (self.side / 2.)
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class Donut(Primitive):
    """ A Shape with an identical concentric shape removed from its center
    """
    def __init__(self, position, shape, inner_diameter, outer_diameter, **kwargs):
        super(Donut, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        if shape not in ('round', 'square', 'hexagon', 'octagon'):
            raise ValueError('Valid shapes are round, square, hexagon or octagon')
        self.shape = shape
        if inner_diameter >= outer_diameter:
            raise ValueError('Outer diameter must be larger than inner diameter.')
        self.inner_diameter = inner_diameter
        self.outer_diameter = outer_diameter
        if self.shape in ('round', 'square', 'octagon'):
            self.width = outer_diameter
            self.height = outer_diameter
        else:
            # Hexagon
            self.width = 0.5 * math.sqrt(3.) * outer_diameter
            self.height = outer_diameter
        self._to_convert = ['position', 'width', 'height', 'inner_diameter', 'outer_diameter']
        
    @property 
    def flashed(self):
        return True

    @property
    def lower_left(self):
        return (self.position[0] - (self.width / 2.),
                self.position[1] - (self.height / 2.))

    @property
    def upper_right(self):
        return (self.position[0] + (self.width / 2.),
                self.position[1] + (self.height / 2.))

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class SquareRoundDonut(Primitive):
    """ A Square with a circular cutout in the center
    """
    def __init__(self, position, inner_diameter, outer_diameter, **kwargs):
        super(SquareRoundDonut, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        if inner_diameter >= outer_diameter:
            raise ValueError('Outer diameter must be larger than inner diameter.')
        self.inner_diameter = inner_diameter
        self.outer_diameter = outer_diameter
        self._to_convert = ['position', 'inner_diameter', 'outer_diameter']
        
    @property 
    def flashed(self):
        return True
    
    @property
    def lower_left(self):
        return tuple([c - self.outer_diameter / 2. for c in self.position])

    @property
    def upper_right(self):
        return tuple([c + self.outer_diameter / 2. for c in self.position])

    @property
    def bounding_box(self):
        min_x = self.lower_left[0]
        max_x = self.upper_right[0]
        min_y = self.lower_left[1]
        max_y = self.upper_right[1]
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))


class Drill(Primitive):
    """ A drill hole
    """
    def __init__(self, position, diameter, hit, **kwargs):
        super(Drill, self).__init__('dark', **kwargs)
        validate_coordinates(position)
        self.position = position
        self.diameter = diameter
        self.hit = hit
        self._to_convert = ['position', 'diameter', 'hit']
        
    @property 
    def flashed(self):
        return False

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        min_x = self.position[0] - self.radius
        max_x = self.position[0] + self.radius
        min_y = self.position[1] - self.radius
        max_y = self.position[1] + self.radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.position = tuple(map(add, self.position, (x_offset, y_offset)))
        
    def __str__(self):
        return '<Drill %f (%f, %f) [%s]>' % (self.diameter, self.position[0], self.position[1], self.hit)
        
        
class Slot(Primitive):
    """ A drilled slot
    """
    def __init__(self, start, end, diameter, hit, **kwargs):
        super(Slot, self).__init__('dark', **kwargs)
        validate_coordinates(start)
        validate_coordinates(end)
        self.start = start
        self.end = end
        self.diameter = diameter
        self.hit = hit
        self._to_convert = ['start', 'end', 'diameter', 'hit']
        
    @property 
    def flashed(self):
        return False

    @property
    def radius(self):
        return self.diameter / 2.

    @property
    def bounding_box(self):
        radius = self.radius
        min_x = min(self.start[0], self.end[0]) - radius
        max_x = max(self.start[0], self.end[0]) + radius
        min_y = min(self.start[1], self.end[1]) - radius
        max_y = max(self.start[1], self.end[1]) + radius
        return ((min_x, max_x), (min_y, max_y))

    def offset(self, x_offset=0, y_offset=0):
        self.start = tuple(map(add, self.start, (x_offset, y_offset)))
        self.end = tuple(map(add, self.end, (x_offset, y_offset)))


class TestRecord(Primitive):
    """ Netlist Test record
    """
    def __init__(self, position, net_name, layer, **kwargs):
        super(TestRecord, self).__init__(**kwargs)
        validate_coordinates(position)
        self.position = position
        self.net_name = net_name
        self.layer = layer