1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
#!/usr/bin/env python3
import math
import sys
from gerbonara import LayerStack
from gerbonara.graphic_objects import Line, Arc
from gerbonara.apertures import CircleAperture
from gerbonara.utils import MM
from gerbonara.utils import rotate_point
def highlight_outline(input_dir, output_dir):
stack = LayerStack.from_directory(input_dir)
outline = []
for obj in stack.outline.objects:
if isinstance(obj, Line):
outline.append(obj.converted('mm'))
elif isinstance(obj, Arc):
outline += obj.converted('mm').approximate(0.1, 'mm')
# FIXME test code
#print('<?xml version="1.0" encoding="utf-8"?>')
#print('<svg width="300mm" height="300mm" viewBox="0 0 300 300" xmlns="http://www.w3.org/2000/svg">')
#outline = []
#for i in range(16):
# for j in range(16):
# cx, cy = i*3, j*3
# w = i/8
# angle = j*2*math.pi/16
# x1, y1 = cx-w/2, cy
# x2, y2 = cx+w/2, cy
#
# x1, y1 = rotate_point(x1, y1, angle, cx, cy)
# x2, y2 = rotate_point(x2, y2, angle, cx, cy)
#
# outline.append(Line(x1, y1, x2, y2, aperture=CircleAperture(1.0, unit=MM), unit=MM))
# print(f'<path style="stroke: red; stroke-width: 0.01mm;" d="M {x1} {y1} L {x2} {y2}"/>')
marker_angle = math.pi/3
marker_spacing = 2
marker_width = 0.1
marker_dx, marker_dy = math.sin(marker_angle)*marker_spacing, -math.cos(marker_angle)*marker_spacing
marker_nx, marker_ny = math.sin(marker_angle), math.cos(marker_angle)
ap = CircleAperture(0.1, unit=MM)
stack['top silk'].apertures.append(ap)
for line in outline:
cx, cy = (line.x1 + line.x2)/2, (line.y1 + line.y2)/2
dx, dy = line.x1 - cx, line.y1 - cy
angle = math.atan2(dy, dx)
r = math.hypot(dx, dy)
if r == 0:
continue
cr = math.hypot(cx, cy)
#w = line.aperture.equivalent_width('mm')
w = 10
tl_x, tl_y = line.x1 + math.sin(angle)*w/2, line.y1 - math.cos(angle)*w/2
tr_x, tr_y = line.x2 + math.sin(angle)*w/2, line.y2 - math.cos(angle)*w/2
br_x, br_y = line.x2 - math.sin(angle)*w/2, line.y2 + math.cos(angle)*w/2
bl_x, bl_y = line.x1 - math.sin(angle)*w/2, line.y1 + math.cos(angle)*w/2
tr = math.dist((tl_x, tl_y), (br_x, br_y))/2
#print(f'<path style="stroke: red; stroke-width: 0.01mm; fill: none;" d="M {tl_x} {tl_y} L {tr_x} {tr_y} L {br_x} {br_y} L {bl_x} {bl_y} Z"/>')
n = math.ceil(tr/marker_spacing)
for i in range(-n, n+1):
px, py = cx + i*marker_dx, cy + i*marker_dy
lx1, ly1 = px + tr*marker_nx, py + tr*marker_ny
lx2, ly2 = px - tr*marker_nx, py - tr*marker_ny
lx1, ly1 = rotate_point(lx1, ly1, angle, cx, cy)
lx2, ly2 = rotate_point(lx2, ly2, angle, cx, cy)
#print(f'<circle style="fill: blue; stroke: none;" r="{marker_spacing/2}" cx="{px}" cy="{py}"/>')
def clip_line_point(x1, y1, x2, y2, xabs, yabs):
#print(x1, y1, x2, y2, end=' -> ', file=sys.stderr)
if x2 != x1:
a = (y2 - y1) / (x2 - x1)
x2 = min(xabs, max(-xabs, x2))
y2 = y1 + a*(x2 - x1)
elif abs(x1) > xabs:
return None
if y2 != y1:
a = (x2 - x1) / (y2 - y1)
y2 = min(yabs, max(-yabs, y2))
x2 = x1 + a*(y2 - y1)
elif abs(y1) > yabs:
return None
#print(x1, y1, x2, y2, file=sys.stderr)
return x1, y1, x2, y2
if not (foo := clip_line_point(lx1-cx, ly1-cy, lx2-cx, ly2-cy, r, w/2)):
continue
lx1, ly1, lx2, ly2 = foo
if not (foo := clip_line_point(lx2, ly2, lx1, ly1, r, w/2)):
continue
lx1, ly1, lx2, ly2 = foo
lx1, ly1, lx2, ly2 = lx1+cx, ly1+cy, lx2+cx, ly2+cy
lx1, ly1 = rotate_point(lx1, ly1, -angle, cx, cy)
lx2, ly2 = rotate_point(lx2, ly2, -angle, cx, cy)
stack['top silk'].objects.append(Line(lx1, ly1, lx2, ly2, unit=MM, aperture=ap, polarity_dark=True))
#print(f'<path style="stroke: blue; stroke-width: {marker_width}mm; opacity: 0.2;" d="M {lx1} {ly1} L {lx2} {ly2}"/>')
#delta_a = marker_angle - angle
#ex, ey = px, py
#print(f'<circle style="fill: blue; stroke: none;" r="{marker_spacing/5}" cx="{ex}" cy="{ey}"/>')
#print(delta_a, file=sys.stderr)
# delta_a + math.pi/2
stack.save_to_directory(output_dir)
#print('</svg>')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('input')
parser.add_argument('output')
args = parser.parse_args()
highlight_outline(args.input, args.output)
|