summaryrefslogtreecommitdiff
path: root/examples/highlight_outline.py
blob: f2e7f3ee7d0001f9f0cd91a09026ef271f2586f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3

import math
import sys

from gerbonara import LayerStack
from gerbonara.graphic_objects import Line, Arc
from gerbonara.apertures import CircleAperture
from gerbonara.utils import MM
from gerbonara.utils import rotate_point

def highlight_outline(input_dir, output_dir):
    stack = LayerStack.from_directory(input_dir)

    outline = []
    for obj in stack.outline.objects:
        if isinstance(obj, Line):
            outline.append(obj.converted('mm'))

        elif isinstance(obj, Arc):
            outline += obj.converted('mm').approximate(0.1, 'mm')

    # FIXME test code
    #print('<?xml version="1.0" encoding="utf-8"?>')
    #print('<svg width="300mm" height="300mm" viewBox="0 0 300 300" xmlns="http://www.w3.org/2000/svg">')
    #outline = []
    #for i in range(16):
    #    for j in range(16):
    #        cx, cy = i*3, j*3
    #        w = i/8
    #        angle = j*2*math.pi/16
    #        x1, y1 = cx-w/2, cy
    #        x2, y2 = cx+w/2, cy
    #
    #        x1, y1 = rotate_point(x1, y1, angle, cx, cy)
    #        x2, y2 = rotate_point(x2, y2, angle, cx, cy)
    #
    #        outline.append(Line(x1, y1, x2, y2, aperture=CircleAperture(1.0, unit=MM), unit=MM))
    #        print(f'<path style="stroke: red; stroke-width: 0.01mm;" d="M {x1} {y1} L {x2} {y2}"/>')

    marker_angle = math.pi/3
    marker_spacing = 2
    marker_width = 0.1

    marker_dx, marker_dy = math.sin(marker_angle)*marker_spacing, -math.cos(marker_angle)*marker_spacing
    marker_nx, marker_ny = math.sin(marker_angle), math.cos(marker_angle)

    ap = CircleAperture(0.1, unit=MM)
    stack['top silk'].apertures.append(ap)

    for line in outline:
        cx, cy = (line.x1 + line.x2)/2, (line.y1 + line.y2)/2
        dx, dy = line.x1 - cx, line.y1 - cy

        angle = math.atan2(dy, dx)
        r = math.hypot(dx, dy)
        if r == 0:
            continue

        cr = math.hypot(cx, cy)
        #w = line.aperture.equivalent_width('mm')
        w = 10

        tl_x, tl_y = line.x1 + math.sin(angle)*w/2, line.y1 - math.cos(angle)*w/2
        tr_x, tr_y = line.x2 + math.sin(angle)*w/2, line.y2 - math.cos(angle)*w/2
        br_x, br_y = line.x2 - math.sin(angle)*w/2, line.y2 + math.cos(angle)*w/2
        bl_x, bl_y = line.x1 - math.sin(angle)*w/2, line.y1 + math.cos(angle)*w/2

        tr = math.dist((tl_x, tl_y), (br_x, br_y))/2

        #print(f'<path style="stroke: red; stroke-width: 0.01mm; fill: none;" d="M {tl_x} {tl_y} L {tr_x} {tr_y} L {br_x} {br_y} L {bl_x} {bl_y} Z"/>')

        n = math.ceil(tr/marker_spacing)
        for i in range(-n, n+1):
            px, py = cx + i*marker_dx, cy + i*marker_dy

            lx1, ly1 = px + tr*marker_nx, py + tr*marker_ny
            lx2, ly2 = px - tr*marker_nx, py - tr*marker_ny

            lx1, ly1 = rotate_point(lx1, ly1, angle, cx, cy)
            lx2, ly2 = rotate_point(lx2, ly2, angle, cx, cy)
            #print(f'<circle style="fill: blue; stroke: none;" r="{marker_spacing/2}" cx="{px}" cy="{py}"/>')

            def clip_line_point(x1, y1, x2, y2, xabs, yabs):
                #print(x1, y1, x2, y2, end=' -> ', file=sys.stderr)
                if x2 != x1:
                    a = (y2 - y1) / (x2 - x1)
                    x2 = min(xabs, max(-xabs, x2))
                    y2 = y1 + a*(x2 - x1)

                elif abs(x1) > xabs:
                    return None

                if y2 != y1:
                    a = (x2 - x1) / (y2 - y1)
                    y2 = min(yabs, max(-yabs, y2))
                    x2 = x1 + a*(y2 - y1)

                elif abs(y1) > yabs:
                    return None

                #print(x1, y1, x2, y2, file=sys.stderr)
                return x1, y1, x2, y2

            if not (foo := clip_line_point(lx1-cx, ly1-cy, lx2-cx, ly2-cy, r, w/2)):
                continue
            lx1, ly1, lx2, ly2 = foo

            if not (foo := clip_line_point(lx2, ly2, lx1, ly1, r, w/2)):
                continue
            lx1, ly1, lx2, ly2 = foo

            lx1, ly1, lx2, ly2 = lx1+cx, ly1+cy, lx2+cx, ly2+cy

            lx1, ly1 = rotate_point(lx1, ly1, -angle, cx, cy)
            lx2, ly2 = rotate_point(lx2, ly2, -angle, cx, cy)

            stack['top silk'].objects.append(Line(lx1, ly1, lx2, ly2, unit=MM, aperture=ap, polarity_dark=True))

            #print(f'<path style="stroke: blue; stroke-width: {marker_width}mm; opacity: 0.2;" d="M {lx1} {ly1} L {lx2} {ly2}"/>')

            #delta_a = marker_angle - angle
            #ex, ey = px, py
            #print(f'<circle style="fill: blue; stroke: none;" r="{marker_spacing/5}" cx="{ex}" cy="{ey}"/>')
            #print(delta_a, file=sys.stderr)
            # delta_a + math.pi/2

    stack.save_to_directory(output_dir)
    #print('</svg>')

if __name__ == '__main__':
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('input')
    parser.add_argument('output')
    args = parser.parse_args()
    highlight_outline(args.input, args.output)