summaryrefslogtreecommitdiff
path: root/coil_parasitics.py
blob: 08a3603253c14fc1f6e2d3d16882bec1d4a00c7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#!/usr/bin/env python3

import math
from pathlib import Path
import multiprocessing
import re
import tempfile
import fnmatch
import shutil
import numpy as np

from pyelmer import elmer
import subprocess_tee
import click
from scipy import constants

def enumerate_mesh_bodies(msh_file):
    with open(msh_file, 'r') as f:
        for line in f:
            if line.startswith('$PhysicalNames'):
                break
        else:
            raise ValueError('No physcial bodies found in mesh file.')

        _num_names = next(f)

        for line in f:
            if line.startswith('$EndPhysicalNames'):
                break
            
            dim, _, line = line.strip().partition(' ')
            tag, _, name = line.partition(' ')
            yield name.strip().strip('"'), (int(dim), int(tag))

# https://en.wikipedia.org/wiki/Metric_prefix
SI_PREFIX = 'QRYZEPTGMk mµnpfazyrq'

def format_si(value, unit='', fractional_digits=1):
    mag = int(math.log10(abs(value))//3)
    value /= 1000**mag
    prefix = SI_PREFIX[SI_PREFIX.find(' ') - mag].strip()
    value = f'{{:.{fractional_digits}f}}'.format(value)
    return f'{value} {prefix}{unit}'


INPUT_EXT_MAP = {
        '.grd': 1,
        '.mesh*': 2,
        '.ep': 3,
        '.ansys': 4,
        '.inp': 5,
        '.fil': 6,
        '.FDNEUT': 7,
        '.unv': 8,
        '.mphtxt': 9,
        '.dat': 10,
        '.node': 11,
        '.ele': 11,
        '.mesh': 12,
        '.msh': 14,
        '.ep.i': 15,
        '.2dm': 16}

OUTPUT_EXT_MAP = {
        '.grd': 1,
        '.mesh*': 2,
        '.ep': 3,
        '.msh': 4,
        '.vtu': 5}

def elmer_grid(infile, outfile=None, intype=None, outtype=None, cwd=None, stdout_log=None, stderr_log=None, **kwargs):
    infile = Path(infile)
    if outfile is not None:
        outfile = Path(outfile)

    if intype is None:
        intype = str(INPUT_EXT_MAP[infile.suffix])

    if outtype is None:
        if outfile is not None and outfile.suffix:
            outtype = str(OUTPUT_EXT_MAP[outfile.suffix])
        else:
            outtype = '2'

    if outfile is not None:
        kwargs['out'] = str(outfile)

    args = ['ElmerGrid', intype, outtype, str(infile)]
    for key, value in kwargs.items():
        args.append(f'-{key}')
        if isinstance(value, (tuple, list)):
            args.extend(str(v) for v in value)
        else:
            args.append(str(value))

    result = subprocess_tee.run(args, cwd=cwd, check=True)
    if stdout_log:
        Path(stdout_log).write_text(result.stdout or '')
    if stderr_log:
        Path(stderr_log).write_text(result.stderr or '')

def elmer_solver(cwd, stdout_log=None, stderr_log=None):
    result = subprocess_tee.run(['ElmerSolver'], cwd=cwd, check=True)
    if stdout_log:
        Path(stdout_log).write_text(result.stdout or '')
    if stderr_log:
        Path(stderr_log).write_text(result.stderr or '')
    return result


@click.command()
@click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path))
@click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path))
def run_capacitance_simulation(mesh_file, sim_dir):
    physical = dict(enumerate_mesh_bodies(mesh_file))
    if sim_dir is not None:
        sim_dir = Path(sim_dir)
        sim_dir.mkdir(exist_ok=True)

    sim = elmer.load_simulation('3D_steady', 'coil_parasitics_sim.yml')
    mesh_dir = '.'
    mesh_fn = 'mesh'
    sim.header['Mesh DB'] = f'"{mesh_dir}" "{mesh_fn}"'
    sim.constants.update({
        'Permittivity of Vacuum': str(constants.epsilon_0),
        'Gravity(4)': f'0 -1 0 {constants.g}',
        'Boltzmann Constant': str(constants.Boltzmann),
        'Unit Charge': str(constants.elementary_charge)})

    air = elmer.load_material('air', sim, 'coil_parasitics_materials.yml')
    ro4003c = elmer.load_material('ro4003c', sim, 'coil_parasitics_materials.yml')

    solver_electrostatic = elmer.load_solver('Electrostatics_Capacitance', sim, 'coil_parasitics_solvers.yml')
    solver_electrostatic.data['Potential Difference'] = '1.0'
    eqn = elmer.Equation(sim, 'main', [solver_electrostatic])

    bdy_sub = elmer.Body(sim, 'substrate', [physical['substrate'][1]])
    bdy_sub.material = ro4003c
    bdy_sub.equation = eqn

    bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]])
    bdy_ab.material = air
    bdy_ab.equation = eqn

    # boundaries
    for name, identity in physical.items():
        if (m := re.fullmatch(r'trace([0-9]+)', name)):
            num = int(m.group(1))

            bndry_m2 = elmer.Boundary(sim, name, [identity[1]])
            bndry_m2.data['Capacitance Body'] = str(num)

    boundary_airbox = elmer.Boundary(sim, 'FarField', [physical['airbox_surface'][1]])
    boundary_airbox.data['Electric Infinity BC'] = 'True'

    with tempfile.TemporaryDirectory() as tmpdir:
        tmpdir = sim_dir if sim_dir else Path(tmpdir)

        sim.write_startinfo(tmpdir)
        sim.write_sif(tmpdir)
        # Convert mesh from gmsh to elemer formats. Also scale it from 1 unit = 1 mm to 1 unit = 1 m (SI units)
        elmer_grid(mesh_file.absolute(), 'mesh', cwd=tmpdir, scale=[1e-3, 1e-3, 1e-3],
                   stdout_log=(tmpdir / 'ElmerGrid_stdout.log'),
                   stderr_log=(tmpdir / 'ElmerGrid_stderr.log'))
        elmer_solver(tmpdir,
                   stdout_log=(tmpdir / 'ElmerSolver_stdout.log'),
                   stderr_log=(tmpdir / 'ElmerSolver_stderr.log'))
        
        capacitance_matrix = np.loadtxt(tmpdir / 'capacitance.txt')

@click.command()
@click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path))
@click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path))
def run_inductance_simulation(mesh_file, sim_dir):
    physical = dict(enumerate_mesh_bodies(mesh_file))

    if sim_dir is not None:
        sim_dir = Path(sim_dir)
        sim_dir.mkdir(exist_ok=True)

    sim = elmer.load_simulation('3D_steady', 'coil_mag_sim.yml')
    mesh_dir = '.'
    mesh_fn = 'mesh'
    sim.header['Mesh DB'] = f'"{mesh_dir}" "{mesh_fn}"'
    sim.constants.update({
        'Permittivity of Vacuum': str(constants.epsilon_0),
        'Gravity(4)': f'0 -1 0 {constants.g}',
        'Boltzmann Constant': str(constants.Boltzmann),
        'Unit Charge': str(constants.elementary_charge)})

    air = elmer.load_material('air', sim, 'coil_mag_materials.yml')
    ro4003c = elmer.load_material('ro4003c', sim, 'coil_mag_materials.yml')
    copper = elmer.load_material('copper', sim, 'coil_mag_materials.yml')

    solver_current = elmer.load_solver('Static_Current_Conduction', sim, 'coil_mag_solvers.yml')
    solver_magdyn = elmer.load_solver('Magneto_Dynamics', sim, 'coil_mag_solvers.yml')
    solver_magdyn_calc = elmer.load_solver('Magneto_Dynamics_Calculations', sim, 'coil_mag_solvers.yml')

    copper_eqn = elmer.Equation(sim, 'copperEqn', [solver_current, solver_magdyn, solver_magdyn_calc])
    air_eqn = elmer.Equation(sim, 'airEqn', [solver_magdyn, solver_magdyn_calc])

    bdy_trace = elmer.Body(sim, 'trace', [physical['trace'][1]])
    bdy_trace.material = copper
    bdy_trace.equation = copper_eqn

    bdy_sub = elmer.Body(sim, 'substrate', [physical['substrate'][1]])
    bdy_sub.material = ro4003c
    bdy_sub.equation = air_eqn

    bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]])
    bdy_ab.material = air
    bdy_ab.equation = air_eqn

    bdy_if_top = elmer.Body(sim, 'interface_top', [physical['interface_top'][1]])
    bdy_if_top.material = copper
    bdy_if_top.equation = copper_eqn

    bdy_if_bottom = elmer.Body(sim, 'interface_bottom', [physical['interface_bottom'][1]])
    bdy_if_bottom.material = copper
    bdy_if_bottom.equation = copper_eqn

    potential_force = elmer.BodyForce(sim, 'electric_potential', {'Electric Potential': 'Equals "Potential"'})
    bdy_trace.body_force = potential_force

    # boundaries
    boundary_airbox = elmer.Boundary(sim, 'FarField', [physical['airbox_surface'][1]])
    boundary_airbox.data['Electric Infinity BC'] = 'True'

    boundary_vplus = elmer.Boundary(sim, 'Vplus', [physical['interface_top'][1]])
    boundary_vplus.data['Potential'] = 1.0
    boundary_vplus.data['Save Scalars'] = True

    boundary_vminus = elmer.Boundary(sim, 'Vminus', [physical['interface_bottom'][1]])
    boundary_vminus.data['Potential'] = 0.0

    with tempfile.TemporaryDirectory() as tmpdir:
        tmpdir = sim_dir if sim_dir else Path(tmpdir)

        sim.write_startinfo(tmpdir)
        sim.write_sif(tmpdir)
        # Convert mesh from gmsh to elemer formats. Also scale it from 1 unit = 1 mm to 1 unit = 1 m (SI units)
        elmer_grid(mesh_file.absolute(), 'mesh', cwd=tmpdir, scale=[1e-3, 1e-3, 1e-3],
                   stdout_log=(tmpdir / 'ElmerGrid_stdout.log'),
                   stderr_log=(tmpdir / 'ElmerGrid_stderr.log'))
        solver_stdout, solver_stderr = (tmpdir / 'ElmerSolver_stdout.log'), (tmpdir / 'ElmerSolver_stderr.log')
        res = elmer_solver(tmpdir,
                   stdout_log=solver_stdout,
                   stderr_log=solver_stderr)
        
        P, R, U_mag = None, None, None
        solver_error = False
        for l in res.stdout.splitlines():
            if (m := re.fullmatch(r'StatCurrentSolve:\s*Total Heating Power\s*:\s*([0-9.+-Ee]+)\s*', l)):
                P = float(m.group(1))
            elif (m := re.fullmatch(r'StatCurrentSolve:\s*Effective Resistance\s*:\s*([0-9.+-Ee]+)\s*', l)):
                R = float(m.group(1))
            elif (m := re.fullmatch(r'MagnetoDynamicsCalcFields:\s*ElectroMagnetic Field Energy\s*:\s*([0-9.+-Ee]+)\s*', l)):
                U_mag = float(m.group(1))
            elif re.fullmatch(r'IterSolve: Linear iteration did not converge to tolerance', l):
                solver_error = True

        if solver_error:
            raise click.ClickException(f'Error: One of the solvers did not converge. See log files for details:\n{solver_stdout.absolute()}\n{solver_stderr.absolute()}')
        elif P is None or R is None or U_mag is None:
            raise click.ClickException(f'Error during solver execution. Electrical parameters could not be calculated. See log files for details:\n{solver_stdout.absolute()}\n{solver_stderr.absolute()}')

        U = math.sqrt(P*R)
        I = math.sqrt(P/R)
        L = 2*U_mag / (I**2)

        assert math.isclose(U, 1.0, abs_tol=1e-3)

        print(f'Coil resistance calculated by solver: {format_si(R, "Ω")}')
        print(f'Inductance calucated from field: {format_si(L, "H")}')


if __name__ == '__main__':
    run_inductance_simulation()