1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
#!/usr/bin/env python3
from math import *
from pathlib import Path
from itertools import cycle
from gerbonara.cad.kicad import pcb as kicad_pcb
from gerbonara.cad.kicad import graphical_primitives as kicad_gr
import click
def point_line_distance(p, l1, l2):
x0, y0 = p
x1, y1 = l1
x2, y2 = l2
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt((x2-x1)**2 + (y2-y1)**2)
def line_line_intersection(l1, l2):
p1, p2 = l1
p3, p4 = l2
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
# https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
px = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
py = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
return px, py
@click.command()
@click.argument('infile', type=click.Path(exists=True, dir_okay=False, path_type=Path))
@click.argument('outfile', type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--polygon', type=int, default=0, help="Use n'th polygon instead of first one. 0-based index.")
@click.option('--start-angle', type=float, default=0, help='Angle for the start at the outermost layer of the spiral in degree')
@click.option('--stop-radius', type=float, default=1, help='Inner radius of spiral')
@click.option('--trace-width', type=float, default=0.15)
@click.option('--clearance', type=float, default=0.15)
def generate(infile, outfile, polygon, start_angle, stop_radius, trace_width, clearance):
board = kicad_pcb.Board.open(infile)
objs = [obj for obj in board.objects() if isinstance(obj, kicad_gr.Polygon)]
print(f'Found {len(objs)} polygon(s).')
poly = objs[polygon]
xy = [(pt.x, pt.y) for pt in poly.pts.xy]
segments = list(zip(xy, xy[1:] + xy[:1]))
vbx, vby = min(x for x, y in xy), min(y for x, y, in xy)
vbw, vbh = max(x for x, y in xy), max(y for x, y, in xy)
vbw, vbh = vbw-vbx, vbh-vby
vbx -= 5
vby -= 5
vbw += 10
vbh += 10
cx, cy = 0, 0
ls = 0
for (x1, y1), (x2, y2) in segments:
l = dist((x1, y1), (x2, y2))
cx += x1*l/2 + x2*l/2
cy += y1*l/2 + y2*l/2
ls += l
cx /= ls
cy /= ls
segment_angles = [(atan2(y1-cy, x1-cx) - atan2(y2-cy, x2-cx) + 2*pi) % (2*pi) for (x1, y1), (x2, y2) in segments]
angle_strs = [f'{degrees(a):.2f}' for a in segment_angles]
print(f'Segment angles: {" ".join(angle_strs)}')
print(f'Sum of segment angles: {degrees(sum(segment_angles)):.2f}')
segment_heights = [point_line_distance((cx, cy), (x1, y1), (x2, y2)) for (x1, y1), (x2, y2) in segments]
segment_foo = list(zip(segment_heights, segments))
midpoints = []
for h, ((x1, y1), (x2, y2)) in segment_foo:
xb = (x1 + x2) / 2
yb = (y1 + y2) / 2
midpoints.append((xb, yb))
normals = []
for h, ((x1, y1), (x2, y2)) in segment_foo:
d12 = dist((x1, y1), (x2, y2))
dx = x2 - x1
dy = y2 - y1
normals.append((-dy/d12, dx/d12))
smallest_radius = min(segment_heights)
#trace_radius = smallest_radius - stop_radius
trace_radius = smallest_radius
num_windings = floor((trace_radius - trace_width) / (clearance + trace_width))
print(f'Going for {num_windings} windings')
segment_foo = list(zip(segment_heights, segments, segment_angles, midpoints, normals))
dbg_lines1, dbg_lines2 = [], []
spiral_points = []
dr_tot = 0
for n in range(num_windings):
for (ha, (pa1, pa2), aa, ma, na), (hb, (pb1, pb2), ab, mb, nb) in zip(segment_foo[-1:] + segment_foo[:-1], segment_foo):
pitch = clearance + trace_width
dr_tot_a = dr_tot
dr_tot_b = dr_tot + ab/(2*pi) * pitch
xma, yma = ma
xna, yna = na
xmb, ymb = mb
xnb, ynb = nb
xa1, ya1 = pa1
xa2, ya2 = pa2
xb1, yb1 = pb1
xb2, yb2 = pb2
dma = dist(pa2, ma)
dmb = dist(pb1, mb)
x_cons_a, y_cons_a = p_cons_a = line_line_intersection((pa2, (cx, cy)), (ma, (xma-xna, yma-yna)))
d_cons_a = dist(p_cons_a, ma)
qa = dma * dr_tot_a / d_cons_a
dra = hypot(qa, dr_tot_a)
nrax = (xa2 - cx) / dist((cx, cy), pa2)
nray = (ya2 - cy) / dist((cx, cy), pa2)
xea = xa2 - nrax*dra
yea = ya2 - nray*dra
x_cons_b, y_cons_b = p_cons_b = line_line_intersection((pb1, (cx, cy)), (mb, (xmb-xnb, ymb-ynb)))
d_cons_b = dist(p_cons_b, mb)
qb = dmb * dr_tot_b / d_cons_b
drb = hypot(qb, dr_tot_b)
nrbx = (xb1 - cx) / dist((cx, cy), pb1)
nrby = (yb1 - cy) / dist((cx, cy), pb1)
xeb = xb1 - nrbx*drb
yeb = yb1 - nrby*drb
xsa = xma - xna*dr_tot_a
ysa = yma - yna*dr_tot_a
xsb = xmb - xnb*dr_tot_b
ysb = ymb - ynb*dr_tot_b
l1 = (xsa, ysa), (xea, yea)
l2 = (xsb, ysb), (xeb, yeb)
dbg_lines1.append(l1)
dbg_lines2.append(l2)
pic = line_line_intersection(l1, l2)
spiral_points.append(pic)
dr_tot = dr_tot_b
#spiral_points = []
#r_now = 0
#for winding in range(num_windings):
# for angle, ((x1, y1), (x2, y2)) in zip(segment_angles, segments):
# angle_frac = angle/(2*pi)
# d_r = angle_frac * (clearance + trace_width)
# r_pt = dist((cx, cy), (x1, y1)) * (num_windings - winding) / num_windings
#
# x1, y1 = x1-cx, y1-cy
# x2, y2 = x2-cx, y2-cy
# l1, l2 = hypot(x1, y1), hypot(x2, y2)
# x1, y1 = x1/l1, y1/l1
# x2, y2 = x2/l2, y2/l2
#
# r_now += d_r
# spiral_points.append((cx + x1*r_pt, cy + y1*r_pt))
path_d = ' '.join([f'M {xy[0][0]} {xy[0][1]}', *[f'L {x} {y}' for x, y in xy[1:]], 'Z'])
path_d2 = ' '.join(f'M {cx} {cy} L {x} {y}' for x, y in xy)
path_d3 = ' '.join([f'M {spiral_points[0][0]} {spiral_points[0][1]}', *[f'L {x} {y}' for x, y in spiral_points[1:]]])
with open('/tmp/test.svg', 'w') as f:
f.write('<?xml version="1.0" standalone="no"?>\n')
f.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n')
f.write(f'<svg version="1.1" width="200mm" height="200mm" viewBox="{vbx} {vby} {vbw} {vbh}" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">>\n')
f.write(f'<path fill="none" stroke="#303030" stroke-width="0.05" d="{path_d}"/>\n')
f.write(f'<path fill="none" stroke="#a0a0a0" stroke-width="0.05" d="{path_d2}"/>\n')
f.write(f'<path fill="none" stroke="#ff00ff" opacity="0.5" stroke-width="{trace_width}" d="{path_d3}"/>\n')
for (x1, y1), (x2, y2) in dbg_lines1:
f.write(f'<path fill="none" stroke="#ff0000" opacity="0.2" stroke-width="0.05" d="M {x1} {y1} L {x2} {y2}"/>')
for (x1, y1), (x2, y2) in dbg_lines2:
f.write(f'<path fill="none" stroke="#0000ff" opacity="0.2" stroke-width="0.05" d="M {x1} {y1} L {x2} {y2}"/>')
for x, y in midpoints:
f.write(f'<path fill="none" stroke="#a0a0ff" stroke-width="0.05" d="M {cx} {cy} L {x} {y}"/>')
f.write(f'<circle r="0.1" fill="blue" stroke="none" cx="{x}" cy="{y}"/>\n')
f.write(f'<circle r="0.1" fill="red" stroke="none" cx="{cx}" cy="{cy}"/>\n')
f.write('</svg>\n')
if __name__ == '__main__':
generate()
|