1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
#!/usr/bin/env python3
import subprocess
import sys
import os
from math import *
from pathlib import Path
from itertools import cycle
from gerbonara.cad.kicad import pcb as kicad_pcb
from gerbonara.cad.kicad import footprints as kicad_fp
from gerbonara.cad.kicad import graphical_primitives as kicad_gr
import click
__version__ = '1.0.0'
def point_line_distance(p, l1, l2):
x0, y0 = p
x1, y1 = l1
x2, y2 = l2
# https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line
return abs((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / sqrt((x2-x1)**2 + (y2-y1)**2)
def line_line_intersection(l1, l2):
p1, p2 = l1
p3, p4 = l2
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
# https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection
px = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
py = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
return px, py
def angle_between_vectors(va, vb):
angle = atan2(vb[1], vb[0]) - atan2(va[1], va[0])
if angle < 0:
angle += 2*pi
return angle
@click.command()
@click.argument('infile', required=False, type=click.Path(exists=True, dir_okay=False, path_type=Path))
@click.argument('outfile', required=False, type=click.Path(writable=True, dir_okay=False, path_type=Path))
@click.option('--footprint-name', help="Name for the generated footprint. Default: Output file name sans extension.")
@click.option('--target-layer', default='F.Cu', help="Target KiCad layer for the generated footprint. Default: F.Cu.")
@click.option('--polygon', type=int, default=0, help="Use n'th polygon instead of first one. 0-based index.")
@click.option('--start-angle', type=float, default=0, help='Angle for the start at the outermost layer of the spiral in degree')
@click.option('--windings', type=int, default=5, help='Number of windings to generate')
@click.option('--trace-width', type=float, default=0.15)
@click.option('--clearance', type=float, default=0.15)
@click.option('--clipboard/--no-clipboard', help='Use clipboard integration (requires wl-clipboard)')
@click.option('--counter-clockwise/--clockwise', help='Direction of generated spiral. Default: clockwise when wound from the inside.')
def generate(infile, outfile, polygon, start_angle, windings, trace_width, clearance, footprint_name, target_layer, clipboard, counter_clockwise):
if 'WAYLAND_DISPLAY' in os.environ:
copy, paste, cliputil = ['wl-copy'], ['wl-paste'], 'xclip'
else:
copy, paste, cliputil = ['xclip', '-i', '-sel', 'clipboard'], ['xclip', '-o', '-sel' 'clipboard'], 'wl-clipboard'
if clipboard:
try:
proc = subprocess.run(paste, capture_output=True, text=True, check=True)
except FileNotFoundError:
print(f'Error: --clipboard requires the {copy[0]} and {paste[0]} utilities from {cliputil} to be installed.', file=sys.stderr)
board = kicad_pcb.Board.load(proc.stdout)
elif not infile:
board = kicad_pcb.Board.load(sys.stdin.read())
else:
board = kicad_pcb.Board.open(infile)
objs = [obj for obj in board.objects() if isinstance(obj, kicad_gr.Polygon)]
print(f'Found {len(objs)} polygon(s).', file=sys.stderr)
poly = objs[polygon]
xy = [(pt.x, pt.y) for pt in poly.pts.xy]
if counter_clockwise:
xy = [(-x, y) for x, y in xy]
segments = list(zip(xy, xy[1:] + xy[:1]))
# normalize orientation, make xy counter-clockwise
if sum((x2 - x1) * (y2 + y1) for (x1, y1), (x2, y2) in segments) < 0:
print(f'Reversing polygon direction.', file=sys.stderr)
xy = xy[::-1]
segments = list(zip(xy, xy[1:] + xy[:1]))
vbx, vby = min(x for x, y in xy), min(y for x, y, in xy)
vbw, vbh = max(x for x, y in xy), max(y for x, y, in xy)
vbw, vbh = vbw-vbx, vbh-vby
vbx -= 5
vby -= 5
vbw += 10
vbh += 10
cx, cy = 0, 0
ls = 0
for (x1, y1), (x2, y2) in segments:
l = dist((x1, y1), (x2, y2))
cx += x1*l/2 + x2*l/2
cy += y1*l/2 + y2*l/2
ls += l
cx /= ls
cy /= ls
segment_angles = [(atan2(y1-cy, x1-cx) - atan2(y2-cy, x2-cx) + 2*pi) % (2*pi) for (x1, y1), (x2, y2) in segments]
angle_strs = [f'{degrees(a):.2f}' for a in segment_angles]
segment_heights = [point_line_distance((cx, cy), (x1, y1), (x2, y2)) for (x1, y1), (x2, y2) in segments]
segment_foo = list(zip(segment_heights, segments))
midpoints = []
for h, ((x1, y1), (x2, y2)) in segment_foo:
xb = (x1 + x2) / 2
yb = (y1 + y2) / 2
midpoints.append((xb, yb))
normals = []
for h, ((x1, y1), (x2, y2)) in segment_foo:
d12 = dist((x1, y1), (x2, y2))
dx = x2 - x1
dy = y2 - y1
normals.append((-dy/d12, dx/d12))
smallest_radius = min(segment_heights)
#trace_radius = smallest_radius - stop_radius
trace_radius = smallest_radius
segment_foo = list(zip(segment_heights, segments, segment_angles, midpoints, normals))
dbg_lines1, dbg_lines2 = [], []
spiral_points = []
dr_tot = trace_width/2
for n in range(windings):
for (ha, (pa1, pa2), aa, ma, na), (hb, (pb1, pb2), ab, mb, nb) in zip(segment_foo[-1:] + segment_foo[:-1], segment_foo):
pitch = clearance + trace_width
dr_tot_a = dr_tot
dr_tot_b = n * pitch + trace_width/2
xma, yma = ma
xna, yna = na
xmb, ymb = mb
xnb, ynb = nb
xa1, ya1 = pa1
xa2, ya2 = pa2
xb1, yb1 = pb1
xb2, yb2 = pb2
dma = dist(pa2, ma)
dmb = dist(pb1, mb)
x_cons_a, y_cons_a = p_cons_a = line_line_intersection((pa2, (cx, cy)), (ma, (xma-xna, yma-yna)))
d_cons_a = dist(p_cons_a, ma)
qa = dma * dr_tot_a / d_cons_a
dra = hypot(qa, dr_tot_a)
nrax = (xa2 - cx) / dist((cx, cy), pa2)
nray = (ya2 - cy) / dist((cx, cy), pa2)
xea = xa2 - nrax*dra
yea = ya2 - nray*dra
x_cons_b, y_cons_b = p_cons_b = line_line_intersection((pb1, (cx, cy)), (mb, (xmb-xnb, ymb-ynb)))
d_cons_b = dist(p_cons_b, mb)
qb = dmb * dr_tot_b / d_cons_b
drb = hypot(qb, dr_tot_b)
nrbx = (xb1 - cx) / dist((cx, cy), pb1)
nrby = (yb1 - cy) / dist((cx, cy), pb1)
xeb = xb1 - nrbx*drb
yeb = yb1 - nrby*drb
xsa = xma - xna*dr_tot_a
ysa = yma - yna*dr_tot_a
xsb = xmb - xnb*dr_tot_b
ysb = ymb - ynb*dr_tot_b
l1 = (xsa, ysa), (xea, yea)
l2 = (xsb, ysb), (xeb, yeb)
dbg_lines1.append(l1)
dbg_lines2.append(l2)
pic = line_line_intersection(l1, l2)
spiral_points.append(pic)
dr_tot = dr_tot_b
#spiral_points = []
#r_now = 0
#for winding in range(num_windings):
# for angle, ((x1, y1), (x2, y2)) in zip(segment_angles, segments):
# angle_frac = angle/(2*pi)
# d_r = angle_frac * (clearance + trace_width)
# r_pt = dist((cx, cy), (x1, y1)) * (num_windings - winding) / num_windings
#
# x1, y1 = x1-cx, y1-cy
# x2, y2 = x2-cx, y2-cy
# l1, l2 = hypot(x1, y1), hypot(x2, y2)
# x1, y1 = x1/l1, y1/l1
# x2, y2 = x2/l2, y2/l2
#
# r_now += d_r
# spiral_points.append((cx + x1*r_pt, cy + y1*r_pt))
out = [spiral_points[0]]
ndrop = 0
for i, (pa, pb, pc) in enumerate(zip(spiral_points, spiral_points[1:], spiral_points[2:])):
xa, ya = pa
xb, yb = pb
xc, yc = pc
if ndrop:
ndrop -= 1
continue
angle = angle_between_vectors((xa-xb, ya-yb), (xc-xb, yc-yb))
if angle > pi:
ndrop += 1
for pd, pe in zip(spiral_points[i+2:], spiral_points[i+3:]):
xd, yd = pd
xe, ye = pe
angle = angle_between_vectors((xa-xb, ya-yb), (xe-xd, ye-yd))
if angle > pi:
ndrop += 1
else:
out.append(line_line_intersection((pa, pb), (pd, pe)))
break
else:
out.append(pb)
spiral_points = out
path_d = ' '.join([f'M {xy[0][0]} {xy[0][1]}', *[f'L {x} {y}' for x, y in xy[1:]], 'Z'])
path_d2 = ' '.join(f'M {cx} {cy} L {x} {y}' for x, y in xy)
path_d3 = ' '.join([f'M {spiral_points[0][0]} {spiral_points[0][1]}', *[f'L {x} {y}' for x, y in spiral_points[1:]]])
with open('/tmp/test.svg', 'w') as f:
f.write('<?xml version="1.0" standalone="no"?>\n')
f.write('<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n')
f.write(f'<svg version="1.1" width="200mm" height="200mm" viewBox="{vbx} {vby} {vbw} {vbh}" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">>\n')
f.write(f'<path fill="none" stroke="#303030" stroke-width="0.05" d="{path_d}"/>\n')
f.write(f'<path fill="none" stroke="#a0a0a0" stroke-width="0.05" d="{path_d2}"/>\n')
f.write(f'<path fill="none" stroke="#ff00ff" opacity="0.5" stroke-width="{trace_width}" d="{path_d3}"/>\n')
for (x1, y1), (x2, y2) in dbg_lines1:
f.write(f'<path fill="none" stroke="#ff0000" opacity="0.2" stroke-width="0.05" d="M {x1} {y1} L {x2} {y2}"/>')
for (x1, y1), (x2, y2) in dbg_lines2:
f.write(f'<path fill="none" stroke="#0000ff" opacity="0.2" stroke-width="0.05" d="M {x1} {y1} L {x2} {y2}"/>')
for x, y in midpoints:
f.write(f'<path fill="none" stroke="#a0a0ff" stroke-width="0.05" d="M {cx} {cy} L {x} {y}"/>')
f.write(f'<circle r="0.1" fill="blue" stroke="none" cx="{x}" cy="{y}"/>\n')
f.write(f'<circle r="0.1" fill="red" stroke="none" cx="{cx}" cy="{cy}"/>\n')
f.write('</svg>\n')
if counter_clockwise:
spiral_points = [(-x, y) for x, y in spiral_points]
fp_lines = [
kicad_fp.Line(
start=kicad_fp.XYCoord(x=x1, y=y1),
end=kicad_fp.XYCoord(x=x2, y=y2),
layer=target_layer,
stroke=kicad_fp.Stroke(width=trace_width))
for (x1, y1), (x2, y2) in zip(spiral_points, spiral_points[1:])]
make_pad = lambda num, x, y: kicad_fp.Pad(
number=str(num),
type=kicad_fp.Atom.smd,
shape=kicad_fp.Atom.circle,
at=kicad_fp.AtPos(x=x, y=y),
size=kicad_fp.XYCoord(x=trace_width, y=trace_width),
layers=[target_layer],
clearance=clearance,
zone_connect=0,
)
if footprint_name:
name = footprint_name
elif outfile:
name = outfile.stem,
else:
name = 'generated_coil'
fp = kicad_fp.Footprint(
name=name,
generator=kicad_fp.Atom('GerbonaraCoilGenV1'),
layer='F.Cu',
descr=f"{windings} winding coil footprint generated by gerbonara'c Coil generator, version {__version__}",
clearance=clearance,
zone_connect=0,
lines=fp_lines,
pads=[make_pad(1, *spiral_points[0]), make_pad(2, *spiral_points[-1])],
)
if clipboard:
try:
print(f'Running {copy[0]}.')
proc = subprocess.Popen(copy, stdin=subprocess.PIPE, text=True)
proc.communicate(fp.serialize())
except FileNotFoundError:
print(f'Error: --clipboard requires the {copy[0]} and {paste[0]} utilities from {cliputil} to be installed.', file=sys.stderr)
elif not outfile:
print(fp.serialize())
else:
fp.write(outfile)
if __name__ == '__main__':
generate()
|