#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2014 Hamilton Kibbe # Copyright 2022 Jan Götte # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ gerber.utils ============ **Gerber and Excellon file handling utilities** This module provides utility functions for working with Gerber and Excellon files. """ import os import re import textwrap from enum import Enum from math import radians, sin, cos, sqrt, atan2, pi class UnknownStatementWarning(Warning): """ Gerbonara found an unknown Gerber or Excellon statement. """ pass class RegexMatcher: """ Internal parsing helper """ def __init__(self): self.mapping = {} def match(self, regex): def wrapper(fun): nonlocal self self.mapping[regex] = fun return fun return wrapper def handle(self, inst, line): for regex, handler in self.mapping.items(): if (match := re.fullmatch(regex, line)): handler(inst, match) return True else: return False class LengthUnit: """ Convenience length unit class. Used in :py:class:`.GraphicObject` and :py:class:`.Aperture` to store lenght information. Provides a number of useful unit conversion functions. Singleton, use only global instances ``utils.MM`` and ``utils.Inch``. """ def __init__(self, name, shorthand, this_in_mm): self.name = name self.shorthand = shorthand self.factor = this_in_mm def convert_from(self, unit, value): """ Convert ``value`` from ``unit`` into this unit. :param unit: ``MM``, ``Inch`` or one of the strings ``"mm"`` or ``"inch"`` :param float value: :rtype: float """ if isinstance(unit, str): unit = units[unit] if unit == self or unit is None or value is None: return value return value * unit.factor / self.factor def convert_to(self, unit, value): """ :py:meth:`.LengthUnit.convert_from` but in reverse. """ if isinstance(unit, str): unit = to_unit(unit) if unit is None: return value return unit.convert_from(self, value) def format(self, value): """ Return a human-readdable string representing value in this unit. :param float value: :returns: something like "3mm" :rtype: str """ return f'{value:.3f}{self.shorthand}' if value is not None else '' def __call__(self, value, unit): """ Convenience alias for :py:meth:`.LengthUnit.convert_from` """ return self.convert_from(unit, value) def __eq__(self, other): if isinstance(other, str): return other.lower() in (self.name, self.shorthand) else: return id(self) == id(other) # This class is a singleton, we don't want copies around def __copy__(self): return self def __deepcopy__(self, memo): return self def __str__(self): return self.shorthand def __repr__(self): return f'' MILLIMETERS_PER_INCH = 25.4 Inch = LengthUnit('inch', 'in', MILLIMETERS_PER_INCH) MM = LengthUnit('millimeter', 'mm', 1) units = {'inch': Inch, 'mm': MM, None: None} def _raise_error(*args, **kwargs): raise SystemError('LengthUnit is a singleton. Use gerbonara.utils.MM or gerbonara.utils.Inch. Please do not invent ' 'your own length units, the imperial system is already messed up enough.') LengthUnit.__init__ = _raise_error def to_unit(name): """ Convert string ``name`` into a registered length unit. Returns ``None`` if the argument cannot be converted. :param str name: ``'mm'`` or ``'inch'`` :returns: ``MM``, ``Inch`` or ``None`` :rtype: :py:class:`.LengthUnit` or ``None`` """ if name is None: return None if isinstance(name, LengthUnit): return name if isinstance(name, str): name = name.lower() if name in units: return units[name] raise ValueError(f'Invalid unit {name!r}. Should be either "mm", "inch" or None for no unit.') class InterpMode(Enum): """ Gerber / Excellon interpolation mode. """ #: straight line LINEAR = 0 #: clockwise circular arc CIRCULAR_CW = 1 #: counterclockwise circular arc CIRCULAR_CCW = 2 def decimal_string(value, precision=6, padding=False): """ Convert float to string with limited precision Parameters ---------- value : float A floating point value. precision : Maximum number of decimal places to print Returns ------- value : string The specified value as a string. """ floatstr = '%0.10g' % value integer = None decimal = None if '.' in floatstr: integer, decimal = floatstr.split('.') elif ',' in floatstr: integer, decimal = floatstr.split(',') else: integer, decimal = floatstr, "0" if len(decimal) > precision: decimal = decimal[:precision] elif padding: decimal = decimal + (precision - len(decimal)) * '0' if integer or decimal: return ''.join([integer, '.', decimal]) else: return int(floatstr) def rotate_point(x, y, angle, cx=0, cy=0): """ Rotate point (x,y) around (cx,cy) by ``angle`` radians clockwise. """ return (cx + (x - cx) * math.cos(-angle) - (y - cy) * math.sin(-angle), cy + (x - cx) * math.sin(-angle) + (y - cy) * math.cos(-angle)) def min_none(a, b): """ Like the ``min(..)`` builtin, but if either value is ``None``, returns the other. """ if a is None: return b if b is None: return a return min(a, b) def max_none(a, b): """ Like the ``max(..)`` builtin, but if either value is ``None``, returns the other. """ if a is None: return b if b is None: return a return max(a, b) def add_bounds(b1, b2): """ Add/union two bounding boxes. :param tuple b1: ``((min_x, min_y), (max_x, max_y))`` :param tuple b2: ``((min_x, min_y), (max_x, max_y))`` :returns: ``((min_x, min_y), (max_x, max_y))`` :rtype: tuple """ (min_x_1, min_y_1), (max_x_1, max_y_1) = b1 (min_x_2, min_y_2), (max_x_2, max_y_2) = b2 min_x, min_y = min_none(min_x_1, min_x_2), min_none(min_y_1, min_y_2) max_x, max_y = max_none(max_x_1, max_x_2), max_none(max_y_1, max_y_2) return ((min_x, min_y), (max_x, max_y)) class Tag: """ Helper class to ease creation of SVG. All API functions that create SVG allow you to substitute this with your own implementation by passing a ``tag`` parameter. """ def __init__(self, name, children=None, root=False, **attrs): self.name, self.attrs = name, attrs self.children = children or [] self.root = root def __str__(self): prefix = '\n' if self.root else '' opening = ' '.join([self.name] + [f'{key.replace("__", ":").replace("_", "-")}="{value}"' for key, value in self.attrs.items()]) if self.children: children = '\n'.join(textwrap.indent(str(c), ' ') for c in self.children) return f'{prefix}<{opening}>\n{children}\n' else: return f'{prefix}<{opening}/>' def arc_bounds(x1, y1, x2, y2, cx, cy, clockwise): """ Calculate bounding box of a circular arc given in Gerber notation (i.e. with center relative to first point). :returns: ``((x_min, y_min), (x_max, y_max))`` """ # This is one of these problems typical for computer geometry where out of nowhere a seemingly simple task just # happens to be anything but in practice. # # Online there are a number of algorithms to be found solving this problem. Often, they solve the more general # problem for elliptic arcs. We can keep things simple here since we only have circular arcs. # # This solution manages to handle circular arcs given in gerber format (with explicit center and endpoints, plus # sweep direction instead of a format with e.g. angles and radius) without any trigonometric functions (e.g. atan2). # # cx, cy are relative to p1. # Center arc on cx, cy cx += x1 cy += y1 x1 -= cx x2 -= cx y1 -= cy y2 -= cy clockwise = bool(clockwise) # bool'ify for XOR/XNOR below # Calculate radius r = math.sqrt(x1**2 + y1**2) # Calculate in which half-planes (north/south, west/east) P1 and P2 lie. # Note that we assume the y axis points upwards, as in Gerber and maths. # SVG has its y axis pointing downwards. p1_west = x1 < 0 p1_north = y1 > 0 p2_west = x2 < 0 p2_north = y2 > 0 # Calculate bounding box of P1 and P2 min_x = min(x1, x2) min_y = min(y1, y2) max_x = max(x1, x2) max_y = max(y1, y2) # North # ^ # | # |(0,0) # West <-----X-----> East # | # +Y | # ^ v # | South # | # +-----> +X # # Check whether the arc sweeps over any coordinate axes. If it does, add the intersection point to the bounding box. # Note that, since this intersection point is at radius r, it has coordinate e.g. (0, r) for the north intersection. # Since we know that the points lie on either side of the coordinate axis, the '0' coordinate of the intersection # point will not change the bounding box in that axis--only its 'r' coordinate matters. We also know that the # absolute value of that coordinate will be greater than or equal to the old coordinate in that direction since the # intersection with the axis is the point where the full circle is tangent to the AABB. Thus, we can blindly set the # corresponding coordinate of the bounding box without min()/max()'ing first. # Handle north/south halfplanes if p1_west != p2_west: # arc starts in west half-plane, ends in east half-plane if p1_west == clockwise: # arc is clockwise west -> east or counter-clockwise east -> west max_y = r # add north to bounding box else: # arc is counter-clockwise west -> east or clockwise east -> west min_y = -r # south else: # Arc starts and ends in same halfplane west/east # Since both points are on the arc (at same radius) in one halfplane, we can use the y coord as a proxy for # angle comparisons. small_arc_is_north_to_south = y1 > y2 small_arc_is_clockwise = small_arc_is_north_to_south == p1_west if small_arc_is_clockwise != clockwise: min_y, max_y = -r, r # intersect aabb with both north and south # Handle west/east halfplanes if p1_north != p2_north: if p1_north == clockwise: max_x = r # east else: min_x = -r # west else: small_arc_is_west_to_east = x1 < x2 small_arc_is_clockwise = small_arc_is_west_to_east == p1_north if small_arc_is_clockwise != clockwise: min_x, max_x = -r, r # intersect aabb with both north and south return (min_x+cx, min_y+cy), (max_x+cx, max_y+cy) def point_line_distance(l1, l2, p): """ Calculate distance between infinite line through l1 and l2, and point p. """ # https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line x1, y1 = l1 x2, y2 = l2 x0, y0 = p length = math.dist(l1, l2) if math.isclose(length, 0): return math.dist(l1, p) return ((x2-x1)*(y1-y0) - (x1-x0)*(y2-y1)) / length def svg_arc(old, new, center, clockwise): """ Format an SVG circular arc "A" path data entry given an arc in Gerber notation (i.e. with center relative to first point). :rtype: str """ r = math.hypot(*center) # invert sweep flag since the svg y axis is mirrored sweep_flag = int(not clockwise) # In the degenerate case where old == new, we always take the long way around. To represent this "full-circle arc" # in SVG, we have to split it into two. if math.isclose(math.dist(old, new), 0): intermediate = old[0] + 2*center[0], old[1] + 2*center[1] # Note that we have to preserve the sweep flag to avoid causing self-intersections by flipping the direction of # a circular cutin return f'A {r:.6} {r:.6} 0 1 {sweep_flag} {intermediate[0]:.6} {intermediate[1]:.6} ' +\ f'A {r:.6} {r:.6} 0 1 {sweep_flag} {new[0]:.6} {new[1]:.6}' else: # normal case d = point_line_distance(old, new, (old[0]+center[0], old[1]+center[1])) large_arc = int((d < 0) == clockwise) return f'A {r:.6} {r:.6} 0 {large_arc} {sweep_flag} {new[0]:.6} {new[1]:.6}' def svg_rotation(angle_rad, cx=0, cy=0): return f'rotate({float(math.degrees(angle_rad)):.4} {float(cx):.6} {float(cy):.6})'