from itertools import zip_longest import subprocess import re from .utils import tmpfile, print_on_error from .image_support import kicad_fp_export, svg_difference, svg_soup, svg_to_png, run_cargo_cmd from .. import graphic_objects as go from ..utils import MM from ..layers import LayerStack from ..cad.kicad.sexp import build_sexp from ..cad.kicad.sexp_mapper import sexp from ..cad.kicad.footprints import Footprint, FootprintInstance, LAYER_MAP_G2K from ..cad.kicad.layer_colors import KICAD_LAYER_COLORS, KICAD_DRILL_COLORS def test_parse(kicad_mod_file): Footprint.open_mod(kicad_mod_file) def test_round_trip(kicad_mod_file): print('========== Stage 1 load ==========') orig_fp = Footprint.open_mod(kicad_mod_file) print('========== Stage 1 save ==========') stage1_sexp = build_sexp(orig_fp.sexp()) with open('/tmp/foo.sexp', 'w') as f: f.write(stage1_sexp) print('========== Stage 2 load ==========') reparsed_fp = Footprint.parse(stage1_sexp) print('========== Stage 2 save ==========') stage2_sexp = build_sexp(reparsed_fp.sexp()) print('========== Checks ==========') for stage1, stage2 in zip_longest(stage1_sexp.splitlines(), stage2_sexp.splitlines()): assert stage1 == stage2 return original = re.sub(r'\(', '\n(', re.sub(r'\s+', ' ', kicad_mod_file.read_text())) original = re.sub(r'\) \)', '))', original) original = re.sub(r'\) \)', '))', original) original = re.sub(r'\) \)', '))', original) original = re.sub(r'\) \)', '))', original) stage1 = re.sub(r'\(', '\n(', re.sub(r'\s+', ' ', stage1_sexp)) for original, stage1 in zip_longest(original.splitlines(), stage1.splitlines()): if original.startswith('(version'): continue original, stage1 = original.strip(), stage1.strip() if original != stage1: if any(original.startswith(f'({foo}') for foo in ['arc', 'circle', 'rectangle', 'polyline', 'text']): # These files have symbols with graphic primitives in non-standard order return if original.startswith('(symbol') and stage1.startswith('(symbol'): # Re-export can change symbol order. This is ok. return if original.startswith('(at') and stage1.startswith('(at'): # There is some disagreement as to whether rotation angles are ints or floats, and the spec doesn't say. return assert original == stage1 def _parse_path_d(path): path_d = path.get('d') if not path_d: return for match in re.finditer(r'[ML] ?([0-9.]+) *,? *([0-9.]+)', path_d): x, y = match.groups() x, y = float(x), float(y) yield x, y def test_render(kicad_mod_file, tmpfile, print_on_error): # Hide text and remove text from KiCad's renders. Our text rendering is alright, but KiCad has some weird issue # where it seems to mis-calculate the bounding box of stroke font text, leading to a wonky viewport not matching the # actual content, and text that is slightly off from where it should be. The difference is only a few hundred # micrometers, but it's enough to really throw off our error calculation, so we just ignore text. fp = FootprintInstance(0, 0, sexp=Footprint.open_mod(kicad_mod_file), hide_text=True) stack = LayerStack(courtyard=True, fabrication=True) fp.render(stack) color_map = {gn_id: KICAD_LAYER_COLORS[kicad_id] for gn_id, kicad_id in LAYER_MAP_G2K.items()} color_map[('drill', 'pth')] = (255, 255, 255, 1) color_map[('drill', 'npth')] = (255, 255, 255, 1) color_map = {key: (f'#{r:02x}{g:02x}{b:02x}', str(a)) for key, (r, g, b, a) in color_map.items()} margin = 10 # mm layer = stack[('top', 'courtyard')] points = [] for obj in layer.objects: if isinstance(obj, (go.Line, go.Arc)): points.append((obj.x1, obj.y1)) points.append((obj.x2, obj.y2)) if not points: print('Footprint has no paths on courtyard layer') return min_x = min(x for x, y in points) min_y = min(y for x, y in points) max_x = max(x for x, y in points) max_y = max(y for x, y in points) w, h = max_x-min_x, max_y-min_y bounds = ((min_x, min_y), (max_x, max_y)) print_on_error('Gerbonara bounds:', bounds, f'w={w:.6f}', f'h={h:.6f}') out_svg = tmpfile('Output', '.svg') out_svg.write_text(str(stack.to_svg(color_map=color_map, force_bounds=bounds, margin=margin))) print_on_error('Input footprint:', kicad_mod_file) ref_svg = tmpfile('Reference render', '.svg') kicad_fp_export(kicad_mod_file, ref_svg) # KiCad's bounding box calculation for SVG output looks broken, and the resulting files have viewports that are too # large. We align our output and KiCad's output using the footprint's courtyard layer. points = [] with svg_soup(ref_svg) as soup: for group in soup.find_all('g'): style = group.get('style', '').lower().replace(' ', '') if 'fill:#ff26e2' not in style or 'stroke:#ff26e2' not in style: continue # This group contains courtyard layer items. for path in group.find_all('path'): points += _parse_path_d(path) if not points: print('Footprint has no paths on courtyard layer') return min_x = min(x for x, y in points) min_y = min(y for x, y in points) max_x = max(x for x, y in points) max_y = max(y for x, y in points) print_on_error('KiCad bounds:', ((min_x, min_y), (max_x, max_y)), f'w={max_x-min_x:.6f}', f'h={max_y-min_y:.6f}') min_x -= margin min_y -= margin max_x += margin max_y += margin w, h = max_x-min_x, max_y-min_y root = soup.find('svg') root_w = root['width'] = f'{w:.6f}mm' root_h = root['height'] = f'{h:.6f}mm' root['viewBox'] = f'{min_x:.6f} {min_y:.6f} {w:.6f} {h:.6f}' for group in soup.find_all('g', attrs={'class': 'stroked-text'}): group.decompose() # Currently, there is a bug in resvg leading to mis-rendering. On the file below from the KiCad standard lib, resvg # renders all round pads in a wrong color (?). Interestingly, passing the file through usvg before rendering fixes # this. # Sample footprint: Connector_PinSocket_2.00mm.pretty/PinSocket_2x11_P2.00mm_Vertical.kicad_mod run_cargo_cmd('usvg', [str(ref_svg), str(ref_svg)]) # fix up usvg width/height with svg_soup(ref_svg) as soup: root = soup.find('svg') root['width'] = root_w root['height'] = root_h svg_to_png(ref_svg, tmpfile('Reference render', '.png'), bg=None, dpi=600) svg_to_png(out_svg, tmpfile('Output render', '.png'), bg=None, dpi=600) mean, _max, hist = svg_difference(ref_svg, out_svg, dpi=600, diff_out=tmpfile('Difference', '.png')) assert mean < 1e-3 assert hist[9] < 100 assert hist[3:].sum() < 1e-3*hist.size