#! /usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2014 Hamilton Kibbe # Copyright 2022 Jan Sebastian Götte # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import io import sys import re import warnings import copy import bisect import textwrap import itertools from collections import namedtuple from pathlib import Path from zipfile import ZipFile, is_zipfile from collections import defaultdict import tempfile from .excellon import ExcellonFile, parse_allegro_ncparam, parse_allegro_logfile from .rs274x import GerberFile from .ipc356 import Netlist from .cam import FileSettings, LazyCamFile from .layer_rules import MATCH_RULES from .utils import sum_bounds, setup_svg, MM, Tag, convex_hull from . import graphic_objects as go from . import apertures as ap from . import graphic_primitives as gp STANDARD_LAYERS = [ 'mechanical outline', 'top copper', 'top mask', 'top silk', 'top paste', 'bottom copper', 'bottom mask', 'bottom silk', 'bottom paste', ] DEFAULT_COLORS = { 'copper': '#cccccc', 'mask': '#004200bf', 'paste': '#999999', 'silk': '#e0e0e0', 'drill': '#303030', 'outline': '#F0C000', } class NamingScheme: kicad = { 'top copper': '{board_name}-F.Cu.gbr', 'top mask': '{board_name}-F.Mask.gbr', 'top silk': '{board_name}-F.SilkS.gbr', 'top paste': '{board_name}-F.Paste.gbr', 'bottom copper': '{board_name}-B.Cu.gbr', 'bottom mask': '{board_name}-B.Mask.gbr', 'bottom silk': '{board_name}-B.SilkS.gbr', 'bottom paste': '{board_name}-B.Paste.gbr', 'inner copper': '{board_name}-In{layer_number}.Cu.gbr', 'mechanical outline': '{board_name}-Edge.Cuts.gbr', 'drill unknown': '{board_name}.drl', 'drill plated': '{board_name}-PTH.drl', 'drill nonplated': '{board_name}-NPTH.drl', 'other comments': '{board_name}-Cmts.User.gbr', 'other drawings': '{board_name}-Dwgs.User.gbr', 'top fabrication': '{board_name}-F.Fab.gbr', 'bottom fabrication': '{board_name}-B.Fab.gbr', 'top adhesive': '{board_name}-F.Adhes.gbr', 'bottom adhesive': '{board_name}-B.Adhes.gbr', 'top courtyard': '{board_name}-F.CrtYd.gbr', 'bottom courtyard': '{board_name}-B.CrtYd.gbr', 'other netlist': '{board_name}.d356', } altium = { 'top copper': '{board_name}.gtl', 'top mask': '{board_name}.gts', 'top silk': '{board_name}.gto', 'top paste': '{board_name}.gtp', 'bottom copper': '{board_name}.gbl', 'bottom mask': '{board_name}.gbs', 'bottom silk': '{board_name}.gbo', 'bottom paste': '{board_name}.gbp', 'inner copper': '{board_name}.gp{layer_number}', 'mechanical outline': '{board_name}.gko', 'drill unknown': '{board_name}.drl', 'drill plated': '{board_name}.plated.drl', 'drill nonplated': '{board_name}.nonplated.drl', 'other comments': '{board_name}.gm2', 'other drawings': '{board_name}.gm3', 'top courtyard': '{board_name}.gm13', 'bottom courtyard': '{board_name}.gm14', 'top fabrication': '{board_name}.gm15', 'bottom fabrication': '{board_name}.gm16', } def apply_rules(filenames, rules): certain = False gen = {} already_matched = set() header_regex = rules.pop('header regex', []) header_regex_matched = [False] * len(header_regex) file_headers = {} def get_header(path): if path not in file_headers: with open(path) as f: file_headers[path] = f.read(16384) return file_headers[path] for layer, regex in rules.items(): for fn in filenames: if fn in already_matched: continue target = None if (m := re.fullmatch(regex, fn.name, re.IGNORECASE)): if layer == 'inner copper': target = 'inner_' + ''.join(e or '' for e in m.groups()) + ' copper' else: target = layer gen[target] = gen.get(target, []) + [fn] already_matched.add(fn) for i, (match_type, layer_match, header_match) in enumerate(header_regex): if re.fullmatch(layer_match, fn.name, re.IGNORECASE) or ( target is not None and re.fullmatch(layer_match, target, re.IGNORECASE)): if re.search(header_match, get_header(fn)): if 'sufficient' in match_type: certain = True header_regex_matched[i] = True if any('required' in match_type and not match for match, (match_type, *_) in zip(header_regex_matched, header_regex)): return False, {} return certain, gen def _best_match(filenames): matches = {} for generator, rules in MATCH_RULES.items(): certain, candidate = apply_rules(filenames, rules) if certain: return generator, candidate matches[generator] = candidate matches = sorted(matches.items(), key=lambda pair: len(pair[1])) generator, files = matches[-1] return generator, files def identify_file(data): """ Identify file type from file contents. Returns either of the string constants :py:obj:`excellon`, :py:obj:`gerber`, or :py:obj:`ipc356`, or returns :py:obj:`None` if the file format is unclear. :param data: Contents of file as :py:obj:`str` :rtype: :py:obj:`str` """ if 'M48' in data: return 'excellon' if 'G90' in data and ';LEADER:' in data: # yet another allegro special case return 'excellon' if 'FSLAX' in data or 'FSTAX' in data: return 'gerber' if 'UNITS CUST' in data: return 'ipc356' return None def _common_prefix(l): out = [] for cand in l: score = lambda n: sum(elem.startswith(cand[:n]) for elem in l) baseline = score(1) if len(l) - baseline > 5: continue for n in range(len(cand) if '.' not in cand else cand.index('.')+1, 2, -1): if len(l) - score(n) < 5: break out.append(cand[:n-1]) if not out: return '' return sorted(out, key=len)[-1] def _do_autoguess(filenames): prefix = _common_prefix([f.name for f in filenames]) matches = {} for f in filenames: name = _layername_autoguesser(f.name[len(prefix):] if f.name.startswith(prefix) else f.name) if name != 'unknown unknown': matches[name] = matches.get(name, []) + [f] inner_layers = [ m for m in matches if 'inner' in m ] if len(inner_layers) >= 2 and 'copper top' not in matches and 'copper bottom' not in matches: if 'inner_01 copper' in matches: warnings.warn('Could not find copper layer. Re-assigning outermost inner layers to top/bottom copper.') matches['top copper'] = matches.pop('inner_01 copper') last_inner = sorted(inner_layers, key=lambda name: int(name.partition(' ')[0].partition('_')[2]))[-1] matches['bottom copper'] = matches.pop(last_inner) return matches def _layername_autoguesser(fn): fn, _, ext = fn.lower().rpartition('.') if ext in ('log', 'err', 'fdl', 'py', 'sh', 'md', 'rst', 'zip', 'pdf', 'svg', 'ps', 'png', 'jpg', 'bmp'): return 'unknown unknown' side, use = 'unknown', 'unknown' if re.search('top|front|pri?m?(ary)?', fn): side = 'top' use = 'copper' if re.search('bot(tom)?|back|sec(ondary)?', fn): side = 'bottom' use = 'copper' if re.search('silks?(creen)?|symbol', fn): use = 'silk' elif re.search('(solder)?paste|metalmask', fn): use = 'paste' elif re.search('(solder)?(mask|resist)', fn): use = 'mask' elif re.search('drill|rout?e?', fn): side = 'drill' use = 'unknown' if re.search(r'np(th|lt)?|(non|un)\W*plated|(non|un)\Wgalv', fn): use = 'nonplated' elif re.search('pth|plated|galv|plt', fn): use = 'plated' elif (m := re.search(r'(la?y?e?r?|in(ner)?|conduct(or|ive)?)\W*(?P[0-9]+)', fn)): use = 'copper' side = f'inner_{int(m["num"]):02d}' elif re.search('film', fn): use = 'copper' elif re.search('out(line)?|board.?geom(etry)?', fn): use = 'outline' side = 'mechanical' elif 'ipc' in fn and '356' in fn: use = 'netlist' side = 'other' elif 'netlist' in fn: use = 'netlist' side = 'other' if side == 'unknown': if re.search(r'[^a-z0-9]a', fn): side = 'top' elif re.search(r'[^a-z0-9]b', fn): side = 'bottom' return f'{side} {use}' def _sort_layername(val): (side, use), _layer = val if side == 'top': return -1 if side == 'bottom': return 1e99 assert side.startswith('inner_') return int(side[len('inner_'):]) def convex_hull_to_lines(points, unit=MM): for (x1, y1), (x2, y2) in zip(points, points[1:] + points): yield go.Line(x1, y1, x2, y2, aperture=ap.CircleAperture(unit(0.1, MM), unit=unit), unit=unit) class LayerStack: """ :py:class:`LayerStack` represents a set of Gerber files that describe different layers of the same board. :ivar graphic_layers: :py:obj:`dict` mapping :py:obj:`(side, use)` tuples to the Gerber layers of the board. :py:obj:`side` can be one of :py:obj:`"top"`, :py:obj:`"bottom"`, :py:obj:`"mechanical"`, or a numbered internal layer such as :py:obj:`"inner2"`. :py:obj:`use` can be one of :py:obj:`"silk", :py:obj:`mask`, :py:obj:`paste` or :py:obj:`copper`. For internal layers, only :py:obj:`copper` is valid. :ivar board_name: Name of this board as parse from the input filenames, as a :py:obj:`str`. You can overwrite this attribute with a different name, which will then be used during saving with the built-in file naming rules. :ivar netlist: The :py:class:`~.ipc356.Netlist` of this board, or :py:obj:`None` :ivar original_path: The path to the directory or zip file that this board was loaded from. :ivar was_zipped: True if this board was loaded from a zip file. :ivar generator: A string containing an educated guess on which EDA tool generated this file. Example: :py:obj:`"altium"` """ def __init__(self, graphic_layers=None, drill_pth=None, drill_npth=None, drill_layers=(), netlist=None, board_name=None, original_path=None, was_zipped=False, generator=None, courtyard=False, fabrication=False, adhesive=False): if not drill_layers and (graphic_layers, drill_pth, drill_npth) == (None, None, None): graphic_layers = {tuple(layer.split()): GerberFile() for layer in ('top paste', 'top silk', 'top mask', 'top copper', 'bottom copper', 'bottom mask', 'bottom silk', 'bottom paste', 'mechanical outline')} if courtyard: graphic_layers = {('top', 'courtyard'): GerberFile(), **graphic_layers, ('bottom', 'courtyard'): GerberFile()} if fabrication: graphic_layers = {('top', 'fabrication'): GerberFile(), **graphic_layers, ('bottom', 'fabrication'): GerberFile()} if adhesive: graphic_layers = {('top', 'adhesive'): GerberFile(), **graphic_layers, ('bottom', 'adhesive'): GerberFile()} drill_pth = ExcellonFile() drill_npth = ExcellonFile() self.graphic_layers = graphic_layers self.drill_pth = drill_pth self.drill_npth = drill_npth self._drill_layers = list(drill_layers) self.drill_mixed = None self.board_name = board_name self.netlist = netlist self.original_path = original_path self.was_zipped = was_zipped self.generator = generator @classmethod def open(kls, path, board_name=None, lazy=False, overrides=None, autoguess=True): """ Load a board from the given path. * The path can be a single file, in which case a :py:class:`LayerStack` containing only that file on a custom layer is returned. * The path can point to a directory, in which case the content's of that directory are analyzed for their file type and function. * The path can point to a zip file, in which case that zip file's contents are analyzed for their file type and function. * Finally, the path can be the string :py:obj:`"-"`, in which case this function will attempt to read a zip file from standard input. :param path: Path to a gerber file, directory or zip file, or the string :py:obj:`"-"` :param board_name: Override board name for the returned :py:class:`LayerStack` instance instead of guessing the board name from the found file names. :param lazy: Do not parse files right away, instead return a :py:class:`LayerStack` containing :py:class:~.cam.LazyCamFile` instances. :param overrides: :py:obj:`dict` containing a filename regex to layer type mapping that will override gerbonara's built-in automatic rules. Each key must be a :py:obj:`str` containing a regex, and each value must be a :py:obj:`(side, use)` :py:obj:`tuple` of :py:obj:`str`. :param autoguess: :py:obj:`bool` to enable or disable gerbonara's built-in automatic filename-based layer function guessing. When :py:obj:`False`, layer functions are deduced only from :py:obj:`overrides`. :rtype: :py:class:`LayerStack` """ if str(path) == '-': data_io = io.BytesIO(sys.stdin.buffer.read()) return kls.from_zip_data(data_io, original_path='', board_name=board_name, lazy=lazy) path = Path(path) if path.is_dir(): return kls.open_dir(path, board_name=board_name, lazy=lazy, overrides=overrides, autoguess=autoguess) elif path.suffix.lower() == '.zip' or is_zipfile(path): return kls.open_zip(path, board_name=board_name, lazy=lazy, overrides=overrides, autoguess=autoguess) else: return kls.from_files([path], board_name=board_name, lazy=lazy, overrides=overrides, autoguess=False) @classmethod def open_zip(kls, file, original_path=None, board_name=None, lazy=False, overrides=None, autoguess=True): """ Load a board from a ZIP file. Refer to :py:meth:`~.layers.LayerStack.open` for the meaning of the other options. :param file: file-like object :param original_path: Override the :py:obj:`original_path` of the resulting :py:class:`LayerStack` with the given value. :rtype: :py:class:`LayerStack` """ tmpdir = tempfile.TemporaryDirectory() tmp_indir = Path(tmpdir.name) / 'input' tmp_indir.mkdir() with ZipFile(file) as f: f.extractall(path=tmp_indir) inst = kls.open_dir(tmp_indir, board_name=board_name, lazy=lazy, overrides=overrides, autoguess=autoguess) inst.tmpdir = tmpdir inst.original_path = Path(original_path or file) inst.was_zipped = True return inst @classmethod def open_dir(kls, directory, board_name=None, lazy=False, overrides=None, autoguess=True): """ Load a board from a directory. Refer to :py:meth:`~.layers.LayerStack.open` for the meaning of the options. :param directory: Path of the directory to process. :rtype: :py:class:`LayerStack` """ directory = Path(directory) if not directory.is_dir(): raise FileNotFoundError(f'{directory} is not a directory') files = [ path for path in directory.glob('**/*') if path.is_file() ] return kls.from_files(files, board_name=board_name, lazy=lazy, original_path=directory, overrides=overrides, autoguess=autoguess) inst.original_path = directory return inst @classmethod def from_files(kls, files, board_name=None, lazy=False, original_path=None, was_zipped=False, overrides=None, autoguess=True): """ Load a board from a directory. Refer to :py:meth:`~.layers.LayerStack.open` for the meaning of the options. :param files: List of paths of the files to load. :param original_path: Override the :py:obj:`original_path` of the resulting :py:class:`LayerStack` with the given value. :param was_zipped: Override the :py:obj:`was_zipped` attribute of the resulting :py:class:`LayerStack` with the given value. :rtype: :py:class:`LayerStack` """ print_layermap = False if autoguess: generator, filemap = _best_match(files) else: generator = 'custom' if overrides: filemap = {} else: filemap = {'unknown unknown': files} all_generator_hints = set() if overrides: for fn in files: for expr, layer in overrides.items(): if re.fullmatch(expr, fn.name): if layer == 'ignore': for entries in filemap.values(): if fn in entries: entries.remove(fn) else: if layer in filemap and fn in filemap[layer]: filemap[layer].remove(fn) filemap[layer] = filemap.get(layer, []) + [fn] if 'autoguess' in filemap: warnings.warn(f'This generator ({generator}) often exports ambiguous filenames. Falling back to autoguesser for some files. Use at your own peril. Autoguessed files: {", ".join(f.name for f in filemap["autoguess"])}') print_layermap = True autoguess_filenames = filemap.pop('autoguess') matched = set() for key, values in _do_autoguess(autoguess_filenames).items(): filemap[key] = filemap.get(key, []) + values matched |= set(values) if generator == 'allegro': # Allegro gerbers often contain the inner layers with completely random filenames and no indication of # layer ordering except for drawings in the mechanical files. We fall back to alphabetic ordering. for fn in autoguess_filenames: if fn not in matched: with open(fn) as f: header = f.read(16384) if re.search(r'G04 Layer:\s*ETCH/.*\*', header): filemap['unknown copper'] = filemap.get('unknown copper', []) + [fn] if (unk := filemap.pop('unknown copper', None)): unk = sorted(unk, key=str) if 'top copper' not in filemap: filemap['top copper'], *unk = [unk] if 'bottom copper' not in filemap: *unk, filemap['bottom copper'] = [unk] i = 1 while unk and i < 128: key = f'inner_{i:02d} copper' if key not in filemap: filemap[key] = [unk.pop(0)] i += 1 if sum(len(files) for files in filemap.values()) < 6 and autoguess: warnings.warn('Ambiguous gerber filenames. Trying last-resort autoguesser.') generator = None print_layermap = True filemap = _do_autoguess(files) if len(filemap) < 6: raise ValueError('Cannot figure out gerber file mapping. Partial map is: ', filemap) excellon_settings, external_tools = None, None automatch_drill_scale = False if generator == 'geda': # geda is written by geniuses who waste no bytes of unnecessary output so it doesn't actually include the # number format in files that use imperial units. Unfortunately it also doesn't include any hints that the # file was generated by geda, so we have to guess by context whether this is just geda being geda or # potential user error. excellon_settings = FileSettings(number_format=(2, 4)) elif generator == 'allegro': # Allegro puts information that is absolutely vital for parsing its excellon files... into another file, # next to the actual excellon file. Despite pretty much everyone else having figured out a way to put that # info into the excellon file itself, even if only as a comment. if 'excellon params' in filemap: excellon_settings = parse_allegro_ncparam(filemap['excellon params'][0].read_text()) for file in filemap['excellon params']: if (external_tools := parse_allegro_logfile(file.read_text())): break del filemap['excellon params'] else: # Ignore if we can't find the param file -- maybe the user has convinced Allegro to actually put this # information into a comment, or maybe they have made Allegro just use decimal points like XNC does. # We'll run an automatic scale matching later. excellon_settings = FileSettings(number_format=(2, 4)) automatch_drill_scale = True print('remaining filemap') import pprint pprint.pprint(filemap) if len(filemap) < 6: raise SystemError('Cannot figure out gerber file mapping') # FIXME use layer metadata from comments and ipc file if available elif generator == 'zuken': if len(filemap) < 6: raise SystemError('Cannot figure out gerber file mapping') # FIXME use layer metadata from comments and ipc file if available elif generator == 'altium': if 'mechanical outline' in filemap: # Use lowest-numbered mechanical layer as outline, ignore others. mechs = {} for layer in filemap['mechanical outline']: if layer.name.lower().endswith('gko'): filemap['mechanical outline'] = [layer] break if (m := re.match(r'.*\.gm([0-9]+)', layer.name, re.IGNORECASE)): mechs[int(m[1])] = layer else: break else: filemap['mechanical outline'] = [sorted(mechs.items(), key=lambda x: x[0])[0][1]] else: excellon_settings = None ambiguous = [ f'{key} ({", ".join(x.name for x in value)})' for key, value in filemap.items() if len(value) > 1 and not 'drill' in key and not key == 'other unknown'] if ambiguous: raise SystemError(f'Ambiguous layer names: {", ".join(ambiguous)}') drill_pth, drill_npth = None, None drill_layers = [] netlist = None layers = {} # { tuple(key.split()): None for key in STANDARD_LAYERS } for key, paths in filemap.items(): if len(paths) > 1 and not 'drill' in key and not key == 'other unknown': raise ValueError(f'Multiple matching files found for {key} layer: {", ".join(map(str, value))}') for path in paths: id_result = identify_file(path.read_text()) if 'netlist' in key: layer = LazyCamFile(Netlist, path) elif ('outline' in key or 'drill' in key) and id_result != 'gerber': if id_result is None: # Since e.g. altium uses ".txt" as the extension for its drill files, we have to assume the # current file might not be a drill file after all. continue if 'nonplated' in key: plated = False elif 'plated' in key: plated = True else: plated = None layer = LazyCamFile(ExcellonFile, path, plated=plated, settings=excellon_settings, external_tools=external_tools) else: layer = LazyCamFile(GerberFile, path) if not lazy: layer = layer.instance if key == 'mechanical outline': layers['mechanical', 'outline'] = layer elif 'drill' in key: if 'nonplated' in key and drill_npth is None: drill_npth = layer elif 'plated' in key and drill_pth is None: drill_pth = layer else: drill_layers.append(layer) elif 'netlist' in key: if netlist: warnings.warn(f'Found multiple netlist files, using only first one. Have: {netlist.original_path.name}, got {path.name}') else: netlist = layer else: side, _, use = key.partition(' ') layers[(side, use)] = layer if not lazy: hints = set(layer.generator_hints) | { generator } all_generator_hints |= hints if len(hints) > 1: warnings.warn('File identification returned ambiguous results. Please raise an issue on the ' 'gerbonara tracker and if possible please provide these input files for reference.') if not board_name: board_name = _common_prefix([l.original_path.name for l in layers.values() if l is not None]) board_name = re.sub(r'^\W+', '', board_name) board_name = re.sub(r'\W+$', '', board_name) if automatch_drill_scale: top_copper = layers[('top', 'copper')].to_excellon(errors='ignore', holes_only=True) # precision is matching precision in mm def map_coords(obj, precision=0.01, scale=1): obj = obj.converted(MM) return round(obj.x*scale/precision), round(obj.y*scale/precision) aper_coords = {map_coords(obj) for obj in top_copper.drills()} for drill_file in [drill_pth, drill_npth, *drill_layers]: if not drill_file or not drill_pth.import_settings._file_has_fixed_width_coordinates: continue scale_matches = {} for exp in range(-6, 6): scale = 10**exp hole_coords = {map_coords(obj, scale=scale) for obj in drill_file.drills()} scale_matches[scale] = len(aper_coords - hole_coords), len(hole_coords - aper_coords) scales_out = [(max(a, b), scale) for scale, (a, b) in scale_matches.items()] _matches, scale = sorted(scales_out)[0] warnings.warn(f'Performing automatic alignment of poorly exported drill layer. Scale matching results: {scale_matches}. Chosen scale: {scale}') # Note: This is only used with allegro files, which use decimal points and explicit units in their tool # definitions. Thus, we only scale object coordinates, and not apertures. for obj in drill_file.objects: obj.scale(scale) stack = kls(layers, drill_pth, drill_npth, drill_layers, board_name=board_name, original_path=original_path, was_zipped=was_zipped, generator=[*all_generator_hints, None][0]) if print_layermap: warnings.warn('Auto-guessed layer map:\n' + stack.format_layer_map()) return stack def format_layer_map(self): lines = [] def print_layer(prefix, file): nonlocal lines if file is None: lines.append(f'{prefix} ') else: lines.append(f'{prefix} {file.original_path.name} {file}') lines.append(' Drill files:') print_layer(' Plated holes:', self.drill_pth) print_layer(' Nonplated holes:', self.drill_npth) for i, l in enumerate(self._drill_layers): print_layer(f' Additional drill layer {i}:', l) print_layer(' Board outline:', self['mechanical outline']) lines.append(' Soldermask:') print_layer(' Top:', self['top mask']) print_layer(' Bottom:', self['bottom mask']) lines.append(' Silkscreen:') print_layer(' Top:', self['top silk']) print_layer(' Bottom:', self['bottom silk']) lines.append(' Copper:') for (side, _use), layer in self.copper_layers: print_layer(f' {side}:', layer) return '\n'.join(lines) def save_to_zipfile(self, path, prefix='', overwrite_existing=True, board_name=None, naming_scheme={}, gerber_settings=None, excellon_settings=None): """ Save this board into a zip file at the given path. For other options, see :py:meth:`~.layers.LayerStack.save_to_directory`. :param path: Path of output zip file :param overwrite_existing: Bool specifying whether override an existing zip file. If :py:obj:`False` and :py:obj:`path` exists, a :py:obj:`ValueError` is raised. :param board_name: Board name to use when naming the Gerber/Excellon files :param prefix: Store output files under the given prefix inside the zip file """ if path.is_file(): if overwrite_existing: path.unlink() else: raise ValueError('output zip file already exists and overwrite_existing is False') if gerber_settings and not excellon_settings: excellon_settings = gerber_settings with ZipFile(path, 'w') as le_zip: for path, layer in self._save_files_iter(board_name=board_name, naming_scheme=naming_scheme): with le_zip.open(prefix + str(path), 'w') as out: out.write(layer.instance.write_to_bytes()) def save_to_directory(self, path, naming_scheme={}, overwrite_existing=True, board_name=None, gerber_settings=None, excellon_settings=None): """ Save this board into a directory at the given path. If the given path does not exist, a new directory is created in its place. :param path: Output directory :param naming_scheme: :py:obj:`dict` specifying the naming scheme to use for the individual layer files. When not specified, the original filenames are kept where available, and a default naming scheme is used. You can provide your own :py:obj:`dict` here, mapping :py:obj:`"side use"` strings to filenames, or use one of :py:attr:`~.layers.NamingScheme.kicad` or :py:attr:`~.layers.NamingScheme.kicad`. :param board_name: Board name to use when naming the Gerber/Excellon files :param overwrite_existing: Bool specifying whether override an existing directory. If :py:obj:`False` and :py:obj:`path` exists, a :py:obj:`ValueError` is raised. Note that a :py:obj:`ValueError` will still be raised if the target exists and is not a directory. :param gerber_settings: :py:class:`~.cam.FileSettings` to use for Gerber file export. When not given, the input file's original settings are re-used if available. If those can't be found anymore, sane defaults are used. We recommend you set this to the result of :py:meth:`~.cam.FileSettings.defaults`. """ outdir = Path(path) outdir.mkdir(parents=True, exist_ok=overwrite_existing) if gerber_settings and not excellon_settings: excellon_settings = gerber_settings for path, layer in self._save_files_iter(board_name=board_name, naming_scheme=naming_scheme): out = outdir / path if out.exists() and not overwrite_existing: raise SystemError(f'Path exists but overwrite_existing is False: {out}') layer.instance.save(out) def _save_files_iter(self, board_name=None, naming_scheme={}): board_name = board_name or self.board_name if board_name is None: import inspect frame = inspect.currentframe() if frame is None: board_name = 'board' else: while frame is not None: import sys if not frame.f_globals['__name__'].startswith('gerbonara'): board_name = frame.f_code.co_name del frame break old_frame, frame = frame, frame.f_back del old_frame def get_name(layer_type, layer): nonlocal naming_scheme, board_name if (m := re.match('inner_([0-9]+) copper', layer_type)): layer_type = 'inner copper' num = int(m[1]) else: num = None if layer_type in naming_scheme: path = naming_scheme[layer_type].format(layer_number=num, board_name=board_name) elif layer.original_path and layer.original_path.name: path = layer.original_path.name else: path = NamingScheme.kicad[layer_type].format(layer_number=num, board_name=board_name) #ext = 'drl' if isinstance(layer, ExcellonFile) else 'gbr' #path = f'{board_name}-{layer_type.replace(" ", "_")}.{ext}' return path for (side, use), layer in self.graphic_layers.items(): yield get_name(f'{side} {use}', layer), layer #self.normalize_drill_layers() if self.drill_pth is not None: yield get_name('drill plated', self.drill_pth), self.drill_pth if self.drill_npth is not None: yield get_name('drill nonplated', self.drill_npth), self.drill_npth for layer in self._drill_layers: yield get_name('drill unknown', layer), layer if self.netlist: yield get_name('other netlist', self.netlist), self.netlist def __str__(self): names = [ f'{side} {use}' for side, use in self.graphic_layers ] num_drill_layers = len(list(self.drill_layers)) return f'' def __repr__(self): return str(self) def to_svg(self, margin=0, side_re='.*', drills=True, arg_unit=MM, svg_unit=MM, force_bounds=None, colors=None, tag=Tag): """ Convert this layer stack to a plain SVG string. This is intended for use cases where the resulting SVG will be processed by other tools, and thus styling with colors or extra markup like Inkscape layer information are unwanted. If you want to instead generate a nice-looking preview image for display or graphical editing in tools such as Inkscape, use :py:meth:`~.layers.LayerStack.to_pretty_svg` instead. WARNING: The SVG files generated by this function preserve the Gerber coordinates 1:1, so the file will be mirrored vertically. :param margin: Export SVG file with given margin around the board's bounding box. :param side_re: A regex, such as ``'top'``, ``'bottom'``, or ``'.*'`` (default). Selects which layers to export. The default includes inner layers. :param drills: :py:obj:`bool` setting if drills are included (default) or not. :param arg_unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit ``margin`` and ``force_bounds`` are specified in. Default: mm :param svg_unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit to use inside the SVG file. Default: mm :param force_bounds: Use bounds given as :py:obj:`((min_x, min_y), (max_x, max_y))` tuple for the output SVG file instead of deriving them from this board's bounding box and ``margin``. Note that this will not scale or move the board, but instead will only crop the viewport. :param colors: Dict mapping ``f'{side} {use}'`` strings to SVG colors. :param tag: Extension point to support alternative XML serializers in addition to the built-in one. :rtype: :py:obj:`str` """ if force_bounds: bounds = svg_unit.convert_bounds_from(arg_unit, force_bounds) else: bounds = self.bounding_box(svg_unit, default=((0, 0), (0, 0))) stroke_attrs = {'stroke_linejoin': 'round', 'stroke_linecap': 'round'} if colors is None: colors = defaultdict(lambda: 'black') tags = [] layer_transform = f'translate(0 {bounds[0][1] + bounds[1][1]}) scale(1 -1)' for (side, use), layer in reversed(self.graphic_layers.items()): if re.fullmatch(side_re, side) and (fg := colors.get(f'{side} {use}')): tags.append(tag('g', list(layer.svg_objects(svg_unit=svg_unit, fg=fg, bg="white", tag=Tag)), **stroke_attrs, id=f'l-{side}-{use}', transform=layer_transform)) if drills: if self.drill_pth and (fg := colors.get('drill pth')): tags.append(tag('g', list(self.drill_pth.svg_objects(svg_unit=svg_unit, fg=fg, bg="white", tag=Tag)), **stroke_attrs, id=f'l-drill-pth', transform=layer_transform)) if self.drill_npth and (fg := colors.get('drill npth')): tags.append(tag('g', list(self.drill_npth.svg_objects(svg_unit=svg_unit, fg=fg, bg="white", tag=Tag)), **stroke_attrs, id=f'l-drill-npth', transform=layer_transform)) if (fg := colors.get('drill unknown')): for i, layer in enumerate(self._drill_layers): tags.append(tag('g', list(layer.svg_objects(svg_unit=svg_unit, fg=fg, bg="white", tag=Tag)), **stroke_attrs, id=f'l-drill-{i}', transform=layer_transform)) return setup_svg(tags, bounds, margin=margin, arg_unit=arg_unit, svg_unit=svg_unit, tag=tag) def to_pretty_svg(self, side='top', margin=0, arg_unit=MM, svg_unit=MM, force_bounds=None, tag=Tag, inkscape=False, colors=None, use=True): """ Convert this layer stack to a pretty SVG string that is suitable for display or for editing in tools such as Inkscape. If you want to process the resulting SVG in other tools, consider using :py:meth:`~layers.LayerStack.to_svg` instead, which produces output without color styling or blending based on SVG filter effects. :param side: One of the strings :py:obj:`"top"` or :py:obj:`"bottom"` specifying which side of the board to render. :param margin: Export SVG file with given margin around the board's bounding box. :param arg_unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit ``margin`` and ``force_bounds`` are specified in. Default: mm :param svg_unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit to use inside the SVG file. Default: mm :param force_bounds: Use bounds given as :py:obj:`((min_x, min_y), (max_x, max_y))` tuple for the output SVG file instead of deriving them from this board's bounding box and ``margin``. Note that this will not scale or move the board, but instead will only crop the viewport. :param tag: Extension point to support alternative XML serializers in addition to the built-in one. :param inkscape: :py:obj:`bool` enabling Inkscape-specific markup such as Inkscape-native layers :param colors: Colorscheme to use, or :py:obj:`None` for the built-in pseudo-realistic green solder mask default color scheme. When given, must be a dict mapping semantic :py:obj:`"side use"` layer names such as :py:obj:`"top copper"` to a HTML-like hex color code such as :py:obj:`#ff00ea`. Transparency is supported through 8-digit color codes. When 8 digits are given, the last two digits are used as the layer's alpha channel. Valid side values in the layer name strings are :py:obj:`"top"`, :py:obj:`"bottom"`, and :py:obj:`"mechanical"` as well as :py:obj:`"inner1"`, :py:obj:`"inner2"` etc. for internal layers. Valid use values are :py:obj:`"mask"`, :py:obj:`"silk"`, :py:obj:`"paste"`, and :py:obj:`"copper"`. For internal layers, only :py:obj:`"copper"` is valid. :param use: Enable/disable ```` tags for aperture flashes. Defaults to :py:obj:`True` (enabled). :rtype: :py:obj:`str` """ if colors is None: colors = DEFAULT_COLORS use_use = use colors_alpha = {} for layer, color in colors.items(): if isinstance(color, str): if re.match(r'#[0-9a-fA-F]{8}', color): colors_alpha[layer] = (color[:-2], int(color[-2:], 16)/255) else: colors_alpha[layer] = (color, 1) else: colors_alpha[layer] = color if force_bounds: bounds = svg_unit.convert_bounds_from(arg_unit, force_bounds) else: bounds = self.board_bounds(unit=svg_unit, default=((0, 0), (0, 0))) filter_defs = [] for layer, (color, alpha) in colors_alpha.items(): filter_defs.append(textwrap.dedent(f''' '''.strip())) inkscape_attrs = lambda label: dict(inkscape__groupmode='layer', inkscape__label=label) if inkscape else {} stroke_attrs = {'stroke_linejoin': 'round', 'stroke_linecap': 'round'} layer_transform=f'translate(0 {bounds[0][1] + bounds[1][1]}) scale(1 -1)' use_defs = [] layers = [] for use in ['copper', 'mask', 'silk', 'paste']: if (side, use) not in self: warnings.warn(f'Layer "{side} {use}" not found. Found layers: {", ".join(side + " " + use for side, use in self.graphic_layers)}') continue layer = self[(side, use)].instance fg, bg = ('white', 'black') if use != 'mask' else ('black', 'white') default_fill = {'copper': fg, 'mask': fg, 'silk': 'none', 'paste': fg}[use] default_stroke = {'copper': 'none', 'mask': 'none', 'silk': fg, 'paste': 'none'}[use] use_map = {} if use_use: layer.dedup_apertures() for obj in layer.objects: if hasattr(obj, 'aperture') and obj.polarity_dark and obj.aperture not in use_map: children = [prim.to_svg(fg, bg, tag=tag) for prim in obj.aperture.flash(0, 0, svg_unit, polarity_dark=True)] use_id = f'a{len(use_defs)}' use_defs.append(tag('g', children, id=use_id)) use_map[obj.aperture] = use_id objects = [] for obj in layer.instance.svg_objects(svg_unit=svg_unit, fg=fg, bg=bg, aperture_map=use_map, tag=Tag): if obj.attrs.get('fill') == default_fill: del obj.attrs['fill'] elif 'fill' not in obj.attrs: obj.attrs['fill'] = 'none' if obj.attrs.get('stroke') == default_stroke: del obj.attrs['stroke'] elif default_stroke != 'none' and 'stroke' not in obj.attrs: obj.attrs['stroke'] = 'none' objects.append(obj) if use == 'mask': objects.insert(0, tag('path', id='outline-path', d=self.outline_svg_d(unit=svg_unit), fill='white')) layers.append(tag('g', objects, id=f'l-{side}-{use}', filter=f'url(#f-{use})', fill=default_fill, stroke=default_stroke, **stroke_attrs, **inkscape_attrs(f'{side} {use}'), transform=layer_transform)) for i, layer in enumerate(self.drill_layers): layers.append(tag('g', list(layer.instance.svg_objects(svg_unit=svg_unit, fg='white', bg='black', tag=Tag)), id=f'l-drill-{i}', filter=f'url(#f-drill)', **stroke_attrs, **inkscape_attrs(f'drill-{i}'), transform=layer_transform)) if self.outline: layers.append(tag('g', list(self.outline.instance.svg_objects(svg_unit=svg_unit, fg='white', bg='black', tag=Tag)), id=f'l-mechanical-outline', **stroke_attrs, **inkscape_attrs(f'outline'), transform=layer_transform)) sc_y, tl_y = 1, 0 if side == 'bottom': sc_x, tl_x = -1, (bounds[0][0] + bounds[1][0]) else: sc_x, tl_x = 1, 0 layer_group = tag('g', layers, transform=f'translate({tl_x} {tl_y}) scale({sc_x} {sc_y})') tags = [tag('defs', filter_defs + use_defs), layer_group] return setup_svg(tags, bounds, margin=margin, arg_unit=arg_unit, svg_unit=svg_unit, pagecolor="white", tag=tag, inkscape=inkscape) def bounding_box(self, unit=MM, default=None): """ Calculate and return the bounding box of this layer stack. This bounding box will include all graphical objects on all layers and drill files. Consider using :py:meth:`~.layers.LayerStack.board_bounds` instead if you are interested in the actual board's bounding box, which usually will be smaller since there could be graphical objects sticking out of the board's outline, especially on drawing or silkscreen layers. :param unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit to return results in. Default: mm :param default: Default value to return if there are no objects on any layer. :returns: ``((x_min, y_min), (x_max, y_max))`` tuple of floats. :rtype: tuple """ return sum_bounds(( layer.bounding_box(unit, default=default) for layer in itertools.chain(self.graphic_layers.values(), self.drill_layers) ), default=default) def board_bounds(self, unit=MM, default=None): """ Calculate and return the bounding box of this board's outline. If this board has no outline, this function falls back to :py:meth:`~.layers.LayerStack.bounding_box`, returning the bounding box of all objects on all layers and drill files instead. :param unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit to return results in. Default: mm :param default: Default value to return if there are no objects on any layer. :returns: ``((x_min, y_min), (x_max, y_max))`` tuple of floats. :rtype: tuple """ if self.outline: return self.outline.instance.bounding_box(unit=unit, default=default) else: return self.bounding_box(unit=unit, default=default) def offset(self, x=0, y=0, unit=MM): """ Move all objects on all layers and drill files by the given amount in X and Y direction. :param x: :py:obj:`float` with length to move objects along X axis. :param y: :py:obj:`float` with length to move objects along Y axis. :param unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit ``x`` and ``y`` are specified in. Default: mm """ for layer in itertools.chain(self.graphic_layers.values(), self.drill_layers): layer.offset(x, y, unit=unit) def rotate(self, angle, cx=0, cy=0, unit=MM): """ Rotate all objects on all layers and drill files by the given angle around the given center of rotation (default: coordinate origin (0, 0)). :param angle: Rotation angle in radians. :param cx: :py:obj:`float` with X coordinate of center of rotation. Default: :py:obj:`0`. :param cy: :py:obj:`float` with Y coordinate of center of rotation. Default: :py:obj:`0`. :param unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). Which unit ``cx`` and ``cy`` are specified in. Default: mm """ for layer in itertools.chain(self.graphic_layers.values(), self.drill_layers): layer.rotate(angle, cx, cy, unit=unit) def scale(self, factor, unit=MM): """ Scale all objects on all layers and drill files by the given scaling factor. Only uniform scaling with one common factor for both X and Y is supported since non-uniform scaling would not work with either arcs or apertures in Gerber or Excellon files. :param factor: Scale factor. :py:obj:`1.0` for no scaling, :py:obj:`2.0` for doubling in both directions. :param unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``) for compatibility with other transform methods. Default: mm """ for layer in itertools.chain(self.graphic_layers.values(), self.drill_layers): layer.scale(factor) def merge_drill_layers(self): """ Merge all drill layers of this board into a single drill layer containing all objects. You can access this drill layer under the :py:attr:`.LayerStack.drill_mixed` attribute. The original layers are removed from the board. """ target = ExcellonFile(comments=['Drill files merged by gerbonara']) for layer in self.drill_layers: if isinstance(layer, GerberFile): layer = layer.to_excellon() target.merge(layer) self.drill_pth = self.drill_npth = None self.drill_mixed = target def normalize_drill_layers(self): """ Take everything from all drill layers of this board, and sort it into three new drill layers: One with all non-plated objects, one with all plated objects, and one for all leftover objects with unknown plating. This method replaces the board's drill layers with these three sorted ones. """ # TODO: maybe also separate into drill and route? drill_pth, drill_npth, drill_aux = [], [], [] for layer in self.drill_layers: if isinstance(layer, GerberFile): layer = layer.to_excellon() if layer.is_plated: drill_pth.append(layer) elif layer.is_nonplated: drill_pth.append(layer) else: drill_aux.append(layer) pth_out, *rest = drill_pth or [ExcellonFile()] for layer in rest: pth_out.merge(layer) npth_out, *rest = drill_npth or [ExcellonFile()] for layer in rest: npth_out.merge(layer) unknown_out = ExcellonFile() for layer in drill_aux: for obj in layer.objects: if obj.plated is None: unknown_out.append(obj) elif obj.plated: pth_out.append(obj) else: npth_out.append(obj) self.drill_pth, self.drill_npth = pth_out, npth_out self._drill_layers = [unknown_out] if unknown_out else [] @property def drill_layers(self): """ Generator iterating all of this board's drill layers. """ if self.drill_pth: yield self.drill_pth if self.drill_npth: yield self.drill_npth if self._drill_layers: yield from self._drill_layers @drill_layers.setter def drill_layers(self, value): self._drill_layers = value self.drill_pth = self.drill_npth = None def __len__(self): return len(self.graphic_layers) def get(self, index, default=None): if index in self: return self[index] else: return default def __contains__(self, index): if isinstance(index, str): side, _, use = index.partition(' ') return (side, use) in self.graphic_layers elif isinstance(index, tuple): return index in self.graphic_layers return index < len(self.copper_layers) def __getitem__(self, index): if isinstance(index, str): side, _, use = index.partition(' ') return self.graphic_layers[(side, use)] elif isinstance(index, tuple): return self.graphic_layers[index] return self.copper_layers[index][1] def __setitem__(self, index, value): if isinstance(index, str): side, _, use = index.partition(' ') self.graphic_layers[(side, use)] = value elif isinstance(index, tuple): self.graphic_layers[index] = value else: raise IndexError('Layer {index} not found. Valid layer indices are "{side} {use}" strings or (side, use) tuples.') def add_layer(self, index): self[index] = GerberFile() @property def copper_layers(self): """ Return all copper layers of this board as a list of ((side, use), layer) tuples. Returns an empty list if the board does not have any copper layers. """ layers = [((side, use), layer) for (side, use), layer in self.graphic_layers.items() if use == 'copper'] return sorted(layers, key=_sort_layername) @property def inner_layers(self): """ Return all inner copper layers of this board as a list of ((side, use), layer) tuples. Returns an empty list if the board does not have any inner layers. """ layers = [((side, use), layer) for (side, use), layer in self.graphic_layers.items() if side.startswith('inner')] return sorted(layers, key=_sort_layername) @property def top_side(self): """ Return a dict containing the subset of layers from :py:meth:`~.layers.LayerStack.graphic_layers` that are on the board's top side. Includes the board outline layer, if available. """ return { key: self[key] for key in ('top copper', 'top mask', 'top silk', 'top paste', 'mechanical outline') } @property def bottom_side(self): """ Return a dict containing the subset of layers from :py:meth:`~.layers.LayerStack.graphic_layers` that are on the board's bottom side. Includes the board outline layer, if available. """ return { key: self[key] for key in ('bottom copper', 'bottom mask', 'bottom silk', 'bottom paste', 'mechanical outline') } @property def outline(self): """ Return this board's outline layer if available, or :py:obj:`None`. """ return self.get('mechanical outline') def outline_svg_d(self, tol=0.01, unit=MM): """ Return this board's outline as SVG path data. :param tol: :py:obj:`float` setting the tolerance below which two points are considered equal :param unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). SVG document unit. Default: mm """ chains = self.outline_polygons(tol, unit) polys = [] for chain in chains: outline = [ (chain[0].x1, chain[0].y1), *((elem.x2, elem.y2) for elem in chain) ] arcs = [ (elem.clockwise, (elem.cx, elem.cy)) if isinstance(elem, gp.Arc) else None for elem in chain ] poly = gp.ArcPoly(outline=outline, arc_centers=arcs) polys.append(' '.join(poly.path_d()) + ' Z') return ' '.join(polys) def outline_polygons(self, tol=0.01, unit=MM): """ Iterator yielding this boards outline as a list of ordered :py:class:`~.graphic_objects.Arc` and :py:class:`~.graphic_objects.Line` objects. This method first sorts all lines and arcs on the outline layer into connected components, then orders them such that one object's end point is the next object's start point, flipping them where necessary. It yields one list of (likely mixed) :py:class:`~.graphic_objects.Arc` and :py:class:`~.graphic_objects.Line` objects per connected component. This method exists because the only convention in Gerber or Excellon outline files is that the outline segments are *visually contiguous*, but that does not necessarily mean that they will be in any particular order inside the G-code. :param tol: :py:obj:`float` setting the tolerance below which two points are considered equal :param unit: :py:class:`.LengthUnit` or str (``'mm'`` or ``'inch'``). SVG document unit. Default: mm """ if not self.outline: warnings.warn("Board has no outline layer, or the outline layer could not be identified by file name. Using the copper layers' convex hull instead.") points = sum((layer.instance.convex_hull(tol, unit) for (_side, _use), layer in self.copper_layers), start=[]) yield list(convex_hull_to_lines(convex_hull(points), unit)) return maybe_allegro_hint = '' if self.generator != 'allegro' else ' This file looks like it was generated by Allegro/OrCAD. These tools produce quite mal-formed gerbers, and often export text on the outline layer. If you generated this file yourself, maybe try twiddling with the export settings.' polygons = [] lines = [ obj.as_primitive(unit) for obj in self.outline.instance.objects if isinstance(obj, (go.Line, go.Arc)) ] by_x = sorted([ (obj.x1, obj) for obj in lines ] + [ (obj.x2, obj) for obj in lines ], key=lambda x: x[0]) dist_sq = lambda x1, y1, x2, y2: (x2-x1)**2 + (y2-y1)**2 joins = {} for cur in lines: # Special case: An arc may describe a complete circle, in which case we have to return it as-is since it # is the only primitive that can join itself. if isinstance(cur, gp.Arc) and cur.is_circle: yield [cur] continue for (i, x, y) in [(0, cur.x1, cur.y1), (1, cur.x2, cur.y2)]: x_left = bisect.bisect_left (by_x, x, key=lambda elem: elem[0] + tol) x_right = bisect.bisect_right(by_x, x, key=lambda elem: elem[0] - tol) selected = { elem for elem_x, elem in by_x[x_left:x_right] if elem != cur } if not selected: continue # loose end nearest = sorted(selected, key=lambda elem: min(dist_sq(elem.x1, elem.y1, x, y), dist_sq(elem.x2, elem.y2, x, y)))[0] d1, d2 = dist_sq(nearest.x1, nearest.y1, x, y), dist_sq(nearest.x2, nearest.y2, x, y) j = 0 if d1 < d2 else 1 if (nearest, j) in joins and joins[(nearest, j)] != (cur, i): warnings.warn(f'Three-way intersection on outline layer at: {(nearest, j)}; {(cur, i)}; and {joins[(nearest, j)]}. Falling back to returning the convex hull of the outline layer.{maybe_allegro_hint}') yield list(convex_hull_to_lines(self.outline.instance.convex_hull(tol, unit), unit)) return if (cur, i) in joins and joins[(cur, i)] != (nearest, j): warnings.warn(f'Three-way intersection on outline layer at: {(nearest, j)}; {(cur, i)}; and {joins[(nearest, j)]}. Falling back to returning the convex hull of the outline layer.{maybe_allegro_hint}') yield list(convex_hull_to_lines(self.outline.instance.convex_hull(tol, unit), unit)) return joins[(cur, i)] = (nearest, j) joins[(nearest, j)] = (cur, i) def flip_if(obj, cond): if cond: return obj.flip() else: return obj while joins: (first, i), (cur, j) = joins.popitem() del joins[(cur, j)] l = [ flip_if(first, not i), flip_if(cur, j) ] while cur != first and (cur, not j) in joins: cur, j = joins.pop((cur, not j)) del joins[(cur, j)] l.append(flip_if(cur, j)) yield l def _merge_layer(self, target, source, mode='above'): if source is None: return if self[target] is None: self[target] = source else: self[target].merge(source, mode) def merge(self, other, mode='above'): """ Merge ``other`` into ``self``, i.e. for all layers, add all objects that are in ``other`` to ``self``. This resets :py:attr:`.import_settings` and :py:attr:`~.CamFile.generator` on all layers. Units and other file-specific settings are handled automatically. For the meaning of the ``mode`` parameter, see :py:meth:`.GerberFile.merge`. Layers are matched by their logical side and function as they are found in :py:meth:`.LayerStack.graphic_layers`. Drill layers are normalized before merging, which splits them into exactly three drill layers: An non-plated one, a plated one, and a (hopefully empty) unknown plating one. """ all_keys = set(self.graphic_layers.keys()) | set(other.graphic_layers.keys()) exclude = { tuple(key.split()) for key in STANDARD_LAYERS } all_keys = { key for key in all_keys if key not in exclude } if all_keys: warnings.warn('Cannot merge unknown layer types: {" ".join(all_keys)}') for side in 'top', 'bottom': for use in 'copper', 'mask', 'silk', 'paste': if (side, use) in other: self._merge_layer((side, use), other[side, use], mode) our_inner, their_inner = self.copper_layers[1:-1], other.copper_layers[1:-1] if bool(our_inner) != bool(their_inner): warnings.warn('Merging board without inner layers into board with inner layers, inner layers will be empty on first board.') elif our_inner and their_inner: warnings.warn('Merging boards with different inner layer counts. Will fill inner layers starting at core.') diff = len(our_inner) - len(their_inner) their_inner = ([None] * max(0, diff//2)) + their_inner + ([None] * max(0, diff//2)) our_inner = ([None] * max(0, -diff//2)) + their_inner + ([None] * max(0, -diff//2)) new_inner = [] for ours, theirs in zip(our_inner, their_inner): if ours is None: new_inner.append(theirs) elif theirs is None: new_inner.append(ours) else: ours.merge(theirs) new_inner.append(ours) for i, layer in enumerate(new_inner, start=1): self[f'inner_{i} copper'] = layer self._merge_layer('mechanical outline', other['mechanical outline']) self.normalize_drill_layers() other.normalize_drill_layers() self.drill_pth.merge(other.drill_pth) self.drill_npth.merge(other.drill_npth) self._drill_layers.extend(other._drill_layers) if self.netlist: self.netlist.merge(other.netlist) else: self.netlist = other.netlist