import math from dataclasses import dataclass, KW_ONLY, astuple, replace, fields from . import graphic_primitives as gp from .gerber_statements import * def convert(value, src, dst): if src == dst or src is None or dst is None or value is None: return value elif dst == 'mm': return value * 25.4 else: return value / 25.4 class Length: def __init__(self, obj_type): self.type = obj_type @dataclass class GerberObject: _ : KW_ONLY polarity_dark : bool = True unit : str = None def converted(self, unit): return replace(self, **{ f.name: convert(getattr(self, f.name), self.unit, unit) for f in fields(self) if type(f.type) is Length }) def _conv(self, value, unit): return convert(value, src=unit, dst=self.unit) def with_offset(self, dx, dy, unit='mm'): dx, dy = self._conv(dx, unit), self._conv(dy, unit) return self._with_offset(dx, dy) def rotate(self, rotation, cx=0, cy=0, unit='mm'): cx, cy = self._conv(cx, unit), self._conv(cy, unit) self._rotate(rotation, cx, cy) def bounding_box(self, unit=None): bboxes = [ p.bounding_box() for p in self.to_primitives(unit) ] min_x = min(min_x for (min_x, _min_y), _ in bboxes) min_y = min(min_y for (_min_x, min_y), _ in bboxes) max_x = max(max_x for _, (max_x, _max_y) in bboxes) max_y = max(max_y for _, (_max_x, max_y) in bboxes) return ((min_x, min_y), (max_x, max_y)) def to_primitives(self, unit=None): raise NotImplementedError() @dataclass class Flash(GerberObject): x : Length(float) y : Length(float) aperture : object def _with_offset(self, dx, dy): return replace(self, x=self.x+dx, y=self.y+dy) def _rotate(self, rotation, cx=0, cy=0): self.x, self.y = gp.rotate_point(self.x, self.y, rotation, cx, cy) def to_primitives(self, unit=None): conv = self.converted(unit) yield from self.aperture.flash(conv.x, conv.y, unit) def to_statements(self, gs): yield from gs.set_polarity(self.polarity_dark) yield from gs.set_aperture(self.aperture) yield FlashStmt(self.x, self.y, unit=self.unit) gs.update_point(self.x, self.y, unit=self.unit) class Region(GerberObject): def __init__(self, outline=None, arc_centers=None, *, unit, polarity_dark): super().__init__(unit=unit, polarity_dark=polarity_dark) outline = [] if outline is None else outline arc_centers = [] if arc_centers is None else arc_centers self.poly = gp.ArcPoly(outline, arc_centers) def __len__(self): return len(self.poly) def __bool__(self): return bool(self.poly) def _with_offset(self, dx, dy): return Region([ (x+dx, y+dy) for x, y in self.poly.outline ], self.poly.arc_centers, polarity_dark=self.polarity_dark, unit=self.unit) def _rotate(self, angle, cx=0, cy=0): self.poly.outline = [ gp.rotate_point(x, y, angle, cx, cy) for x, y in self.poly.outline ] self.poly.arc_centers = [ (arc[0], gp.rotate_point(*arc[1], angle, cx, cy)) if arc else None for arc in self.poly.arc_centers ] def append(self, obj): if obj.unit != self.unit: raise ValueError('Cannot append Polyline with "{obj.unit}" coords to Region with "{self.unit}" coords.') if not self.poly.outline: self.poly.outline.append(obj.p1) self.poly.outline.append(obj.p2) if isinstance(obj, Arc): self.poly.arc_centers.append((obj.clockwise, obj.center)) else: self.poly.arc_centers.append(None) def to_primitives(self, unit=None): self.poly.polarity_dark = self.polarity_dark # FIXME: is this the right spot to do this? if unit == self.unit: yield self.poly else: conv_outline = [ (convert(x, self.unit, unit), convert(y, self.unit, unit)) for x, y in self.poly.outline ] convert_entry = lambda entry: (entry[0], (convert(entry[1][0], self.unit, unit), convert(entry[1][1], self.unit, unit))) conv_arc = [ None if entry is None else convert_entry(entry) for entry in self.poly.arc_centers ] yield gp.ArcPoly(conv_outline, conv_arc) def to_statements(self, gs): yield from gs.set_polarity(self.polarity_dark) yield RegionStartStmt() yield from gs.set_current_point(self.poly.outline[0], unit=self.unit) for point, arc_center in zip(self.poly.outline[1:], self.poly.arc_centers): if arc_center is None: yield from gs.set_interpolation_mode(LinearModeStmt) yield InterpolateStmt(*point, unit=self.unit) gs.update_point(*point, unit=self.unit) else: clockwise, (cx, cy) = arc_center x2, y2 = point yield from gs.set_interpolation_mode(CircularCWModeStmt if clockwise else CircularCCWModeStmt) yield InterpolateStmt(x2, y2, cx-x2, cy-y2, unit=self.unit) gs.update_point(x2, y2, unit=self.unit) yield RegionEndStmt() @dataclass class Line(GerberObject): # Line with *round* end caps. x1 : Length(float) y1 : Length(float) x2 : Length(float) y2 : Length(float) aperture : object def _with_offset(self, dx, dy): return replace(self, x1=self.x1+dx, y1=self.y1+dy, x2=self.x2+dx, y2=self.y2+dy) def _rotate(self, rotation, cx=0, cy=0): self.x1, self.y1 = gp.rotate_point(self.x1, self.y1, rotation, cx, cy) self.x2, self.y2 = gp.rotate_point(self.x2, self.y2, rotation, cx, cy) @property def p1(self): return self.x1, self.y1 @property def p2(self): return self.x2, self.y2 def to_primitives(self, unit=None): conv = self.converted(unit) yield gp.Line(*conv.p1, *conv.p2, self.aperture.equivalent_width(unit), polarity_dark=self.polarity_dark) def to_statements(self, gs): yield from gs.set_polarity(self.polarity_dark) yield from gs.set_aperture(self.aperture) yield from gs.set_interpolation_mode(LinearModeStmt) yield from gs.set_current_point(self.p1, unit=self.unit) yield InterpolateStmt(*self.p2, unit=self.unit) gs.update_point(*self.p2, unit=self.unit) @dataclass class Drill(GerberObject): x : Length(float) y : Length(float) diameter : Length(float) def _with_offset(self, dx, dy): return replace(self, x=self.x+dx, y=self.y+dy) def _rotate(self, angle, cx=0, cy=0): self.x, self.y = gp.rotate_point(self.x, self.y, angle, cx, cy) def to_primitives(self, unit=None): conv = self.converted(unit) yield gp.Circle(conv.x, conv.y, conv.diameter/2) @dataclass class Slot(GerberObject): x1 : Length(float) y1 : Length(float) x2 : Length(float) y2 : Length(float) width : Length(float) def _with_offset(self, dx, dy): return replace(self, x1=self.x1+dx, y1=self.y1+dy, x2=self.x2+dx, y2=self.y2+dy) def _rotate(self, rotation, cx=0, cy=0): if cx is None: cx = (self.x1 + self.x2) / 2 cy = (self.y1 + self.y2) / 2 self.x1, self.y1 = gp.rotate_point(self.x1, self.y1, rotation, cx, cy) self.x2, self.y2 = gp.rotate_point(self.x2, self.y2, rotation, cx, cy) @property def p1(self): return self.x1, self.y1 @property def p2(self): return self.x2, self.y2 def to_primitives(self, unit=None): conv = self.converted(unit) yield gp.Line(*conv.p1, *conv.p2, conv.width, polarity_dark=self.polarity_dark) @dataclass class Arc(GerberObject): x1 : Length(float) y1 : Length(float) x2 : Length(float) y2 : Length(float) # relative to (x1, x2) cx : Length(float) cy : Length(float) clockwise : bool aperture : object def _with_offset(self, dx, dy): return replace(self, x1=self.x1+dx, y1=self.y1+dy, x2=self.x2+dx, y2=self.y2+dy) @property def p1(self): return self.x1, self.y1 @property def p2(self): return self.x2, self.y2 @property def center(self): return self.cx + self.x1, self.cy + self.y1 def _rotate(self, rotation, cx=0, cy=0): # rotate center first since we need old x1, y1 here new_cx, new_cy = gp.rotate_point(*self.center, rotation, cx, cy) self.x1, self.y1 = gp.rotate_point(self.x1, self.y1, rotation, cx, cy) self.x2, self.y2 = gp.rotate_point(self.x2, self.y2, rotation, cx, cy) self.cx, self.cy = new_cx - self.x1, new_cy - self.y1 def to_primitives(self, unit=None): conv = self.converted(unit) yield gp.Arc(x1=conv.x1, y1=conv.y1, x2=conv.x2, y2=conv.y2, cx=conv.cx+conv.x1, cy=conv.cy+conv.y1, clockwise=self.clockwise, width=self.aperture.equivalent_width(unit), polarity_dark=self.polarity_dark) def to_statements(self, gs): yield from gs.set_polarity(self.polarity_dark) yield from gs.set_aperture(self.aperture) yield from gs.set_interpolation_mode(CircularCCWModeStmt) yield from gs.set_current_point(self.p1, unit=self.unit) yield InterpolateStmt(self.x2, self.y2, self.cx, self.cy, unit=self.unit) gs.update_point(*self.p2, unit=self.unit)