import math from dataclasses import dataclass, replace, fields, InitVar, KW_ONLY from .aperture_macros.parse import GenericMacros from . import graphic_primitives as gp def _flash_hole(self, x, y): if self.hole_rect_h is not None: return self.primitives(x, y), Rectangle((x, y), (self.hole_dia, self.hole_rect_h), rotation=self.rotation, polarity_dark=False) else: return self.primitives(x, y), Circle((x, y), self.hole_dia, polarity_dark=False) def strip_right(*args): args = list(args) while args and args[-1] is None: args.pop() return args class Length: def __init__(self, obj_type): self.type = obj_type CONVERSION_FACTOR = {None: 1, 'mm': 25.4, 'inch': 1/25.4} @dataclass class Aperture: _ : KW_ONLY unit : str = None @property def hole_shape(self): if self.hole_rect_h is not None: return 'rect' else: return 'circle' @property def hole_size(self): return (self.hole_dia, self.hole_rect_h) def convert(self, value, unit): if self.unit == unit or self.unit is None or unit is None or value is None: return value elif unit == 'mm': return value * 25.4 else: return value / 25.4 def convert_from(self, value, unit): if self.unit == unit or self.unit is None or unit is None or value is None: return value elif unit == 'mm': return value / 25.4 else: return value * 25.4 def params(self, unit=None): out = [] for f in fields(self): if f.kw_only: continue val = getattr(self, f.name) if isinstance(f.type, Length): val = self.convert(val, unit) out.append(val) return out def flash(self, x, y): return self.primitives(x, y) @property def equivalent_width(self): raise ValueError('Non-circular aperture used in interpolation statement, line width is not properly defined.') def to_gerber(self, settings=None): # Hack: The standard aperture shapes C, R, O do not have a rotation parameter. To make this API easier to use, # we emulate this parameter. Our circle, rectangle and oblong classes below have a rotation parameter. Only at # export time during to_gerber, this parameter is evaluated. unit = settings.unit if settings else None #print(f'aperture to gerber {self.unit=} {settings=} {unit=}') actual_inst = self._rotated() params = 'X'.join(f'{float(par):.4}' for par in actual_inst.params(unit) if par is not None) return f'{actual_inst.gerber_shape_code},{params}' def __eq__(self, other): # We need to choose some unit here. return hasattr(other, to_gerber) and self.to_gerber('mm') == other.to_gerber('mm') def _rotate_hole_90(self): if self.hole_rect_h is None: return {'hole_dia': self.hole_dia, 'hole_rect_h': None} else: return {'hole_dia': self.hole_rect_h, 'hole_rect_h': self.hole_dia} @dataclass class CircleAperture(Aperture): gerber_shape_code = 'C' human_readable_shape = 'circle' diameter : Length(float) hole_dia : Length(float) = None hole_rect_h : Length(float) = None rotation : float = 0 # radians; for rectangular hole; see hack in Aperture.to_gerber def primitives(self, x, y, rotation): return [ gp.Circle(x, y, self.diameter/2) ] def __str__(self): return f'' flash = _flash_hole @property def equivalent_width(self): return self.diameter def dilated(self, offset, unit='mm'): offset = self.convert_from(offset, unit) return replace(self, diameter=self.diameter+2*offset, hole_dia=None, hole_rect_h=None) def _rotated(self): if math.isclose(self.rotation % (2*math.pi), 0) or self.hole_rect_h is None: return self else: return self.to_macro(self.rotation) def to_macro(self): return ApertureMacroInstance(GenericMacros.circle, self.params(unit='mm')) def params(self, unit=None): return strip_right( self.convert(self.diameter, unit), self.convert(self.hole_dia, unit), self.convert(self.hole_rect_h, unit)) @dataclass class RectangleAperture(Aperture): gerber_shape_code = 'R' human_readable_shape = 'rect' w : Length(float) h : Length(float) hole_dia : Length(float) = None hole_rect_h : Length(float) = None rotation : float = 0 # radians def primitives(self, x, y): return [ gp.Rectangle(x, y, self.w, self.h, rotation=self.rotation) ] def __str__(self): return f'' flash = _flash_hole @property def equivalent_width(self): return math.sqrt(self.w**2 + self.h**2) def dilated(self, offset, unit='mm'): offset = self.convert_from(offset, unit) return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None) def _rotated(self): if math.isclose(self.rotation % math.pi, 0): return self elif math.isclose(self.rotation % math.pi, math.pi/2): return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0) else: # odd angle return self.to_macro() def to_macro(self): return ApertureMacroInstance(GenericMacros.rect, [self.convert(self.w, 'mm'), self.convert(self.h, 'mm'), self.convert(self.hole_dia, 'mm') or 0, self.convert(self.hole_rect_h, 'mm') or 0, self.rotation]) def params(self, unit=None): return strip_right( self.convert(self.w, unit), self.convert(self.h, unit), self.convert(self.hole_dia, unit), self.convert(self.hole_rect_h, unit)) @dataclass class ObroundAperture(Aperture): gerber_shape_code = 'O' human_readable_shape = 'obround' w : Length(float) h : Length(float) hole_dia : Length(float) = None hole_rect_h : Length(float) = None rotation : float = 0 def primitives(self, x, y): return [ gp.Obround(x, y, self.w, self.h, rotation=self.rotation) ] def __str__(self): return f'' flash = _flash_hole def dilated(self, offset, unit='mm'): offset = self.convert_from(offset, unit) return replace(self, w=self.w+2*offset, h=self.h+2*offset, hole_dia=None, hole_rect_h=None) def _rotated(self): if math.isclose(self.rotation % math.pi, 0): return self elif math.isclose(self.rotation % math.pi, math.pi/2): return replace(self, w=self.h, h=self.w, **self._rotate_hole_90(), rotation=0) else: return self.to_macro() def to_macro(self): # generic macro only supports w > h so flip x/y if h > w inst = self if self.w > self.h else replace(self, w=self.h, h=self.w, **_rotate_hole_90(self), rotation=self.rotation-90) return ApertureMacroInstance(GenericMacros.obround, [self.convert(inst.w, 'mm'), self.convert(ints.h, 'mm'), self.convert(inst.hole_dia, 'mm'), self.convert(inst.hole_rect_h, 'mm'), inst.rotation]) def params(self, unit=None): return strip_right( self.convert(self.w, unit), self.convert(self.h, unit), self.convert(self.hole_dia, unit), self.convert(self.hole_rect_h, unit)) @dataclass class PolygonAperture(Aperture): gerber_shape_code = 'P' diameter : Length(float) n_vertices : int rotation : float = 0 hole_dia : Length(float) = None def primitives(self, x, y): return [ gp.RegularPolygon(x, y, diameter, n_vertices, rotation=self.rotation) ] def __str__(self): return f'<{self.n_vertices}-gon aperture d={self.diameter:.3}' def dilated(self, offset, unit='mm'): offset = self.convert_from(offset, unit) return replace(self, diameter=self.diameter+2*offset, hole_dia=None) flash = _flash_hole def _rotated(self): return self def to_macro(self): return ApertureMacroInstance(GenericMacros.polygon, self.params('mm')) def params(self, unit=None): rotation = self.rotation % (2*math.pi / self.n_vertices) if self.rotation is not None else None if self.hole_dia is not None: return self.convert(self.diameter, unit), self.n_vertices, rotation, self.convert(self.hole_dia, unit) elif rotation is not None and not math.isclose(rotation, 0): return self.convert(self.diameter, unit), self.n_vertices, rotation else: return self.convert(self.diameter, unit), self.n_vertices @dataclass class ApertureMacroInstance(Aperture): macro : object parameters : [float] rotation : float = 0 def __post__init__(self, macro): self._primitives = macro.to_graphic_primitives(parameters) @property def gerber_shape_code(self): return self.macro.name def primitives(self, x, y): # FIXME return graphical primitives not macro primitives here return [ primitive.with_offset(x, y).rotated(self.rotation, cx=0, cy=0) for primitive in self._primitives ] def dilated(self, offset, unit='mm'): return replace(self, macro=self.macro.dilated(offset, unit)) def _rotated(self): if math.isclose(self.rotation % (2*math.pi), 0): return self else: return self.to_macro() def to_macro(self): return replace(self, macro=self.macro.rotated(self.rotation), rotation=0) def __eq__(self, other): return hasattr(other, 'macro') and self.macro == other.macro and \ hasattr(other, 'params') and self.params == other.params and \ hasattr(other, 'rotation') and self.rotation == other.rotation def params(self, unit=None): # We ignore "unit" here as we convert the actual macro, not this instantiation. # We do this because here we do not have information about which parameter has which physical units. return tuple(self.parameters)