import sys import re import math import string import itertools from copy import copy, deepcopy import warnings import importlib.resources from ..utils import MM, rotate_point, bbox_intersect from .primitives import * from ..graphic_objects import Region from ..apertures import RectangleAperture, CircleAperture, ApertureMacroInstance from ..aperture_macros.parse import ApertureMacro, ParameterExpression, VariableExpression from ..aperture_macros import primitive as amp from .kicad import footprints as kfp from . import data as package_data class ProtoBoard(Board): def __init__(self, w, h, content, margin=None, corner_radius=None, mounting_hole_dia=None, mounting_hole_offset=None, unit=MM): corner_radius = corner_radius or unit(1.5, MM) super().__init__(w, h, corner_radius, unit=unit) self.margin = margin or unit(2, MM) self.content = content if mounting_hole_dia: mounting_hole_offset = mounting_hole_offset or mounting_hole_dia*2 ko = mounting_hole_offset + mounting_hole_dia*(0.5 + 0.25) stack = MechanicalHoleStack(mounting_hole_dia, unit=unit) self.mounting_holes = [ Pad(mounting_hole_offset, mounting_hole_offset, pad_stack=stack, unit=unit), Pad(w-mounting_hole_offset, mounting_hole_offset, pad_stack=stack, unit=unit), Pad(mounting_hole_offset, h-mounting_hole_offset, pad_stack=stack, unit=unit), Pad(w-mounting_hole_offset, h-mounting_hole_offset, pad_stack=stack, unit=unit)] for hole in self.mounting_holes: self.add(hole) self.keepouts.append(((0, 0), (ko, ko))) self.keepouts.append(((w-ko, 0), (w, ko))) self.keepouts.append(((0, h-ko), (ko, h))) self.keepouts.append(((w-ko, h-ko), (w, h))) self.generate() def generate(self, unit=MM): bbox = ((self.margin, self.margin), (self.w-self.margin, self.h-self.margin)) bbox = unit.convert_bounds_from(self.unit, bbox) hole_bboxes = [hole.bounding_box(unit) for hole in self.mounting_holes] for obj in self.content.generate(bbox, (True, True, True, True), self.keepouts, self.margin, True, unit): if isinstance(obj, Text): # It's okay for the text to go into the mounting hole keepouts, we just don't want it to overlap with # the actual mounting holes. if not any(bbox_intersect(obj.bounding_box(unit), hole_bbox) for hole_bbox in hole_bboxes): self.add(obj, keepout_errors='ignore') else: self.add(obj, keepout_errors='skip') class PropLayout: def __init__(self, content, direction, proportions): self.content = list(content) if direction not in ('h', 'v'): raise ValueError('direction must be one of "h", or "v".') self.direction = direction self.proportions = list(proportions) if len(content) != len(proportions): raise ValueError('proportions and content must have same length') def increment_x(self): if self.direction == 'h': return 0 else: return max(obj.increment_x() for obj in self.content) def increment_y(self): if self.direction == 'v': return 0 else: return max(obj.increment_y() for obj in self.content) def generate(self, bbox, border_text, keepouts, text_margin, two_sided, unit=MM): for i, (bbox, child) in enumerate(self.layout_2d(bbox, unit)): first = bool(i == 0) last = bool(i == len(self.content)-1) yield from child.generate(bbox, ( border_text[0] and (last or self.direction == 'h'), border_text[1] and (last or self.direction == 'v'), border_text[2] and (first or self.direction == 'h'), border_text[3] and (first or self.direction == 'v'), ), keepouts, text_margin, two_sided, unit) def fit_size(self, w, h, unit=MM): widths = [] heights = [] for ((x_min, y_min), (x_max, y_max)), child in self.layout_2d(((0, 0), (w, h)), unit): if not isinstance(child, EmptyProtoArea): widths.append(x_max - x_min) heights.append(y_max - y_min) if self.direction == 'h': return sum(widths), max(heights, default=0) else: return max(widths, default=0), sum(heights) def layout_2d(self, bbox, unit=MM): (x, y), (w, h) = bbox w, h = w-x, h-y total_w, total_h = w, h actual_l = 0 target_l = 0 total_l = total_w if self.direction == 'h' else total_h sizes = [] for l, child in zip(self.layout(w if self.direction == 'h' else h, unit), self.content): this_x, this_y = x, y this_w, this_h = w, h target_l += l if self.direction == 'h': this_w = target_l - actual_l else: this_h = target_l - actual_l this_w, this_h = child.fit_size(this_w, this_h, unit) if self.direction == 'h': x += this_w actual_l += this_w this_h = h else: y += this_h actual_l += this_h this_w = w sizes.append(((this_x, this_y), (this_w, this_h))) # We don't want to pull in a whole bin packing implementation here, but we also don't want to be too dumb. Thus, # we just take the leftover space and distribute it to the children in descending increment (grid / pitch size). children_sorted = reversed(sorted(enumerate(self.content), key=lambda e: e[1].increment_x() if self.direction == 'h' else e[1].increment_y())) excess_l = total_l - actual_l children_extra = [0] * len(self.content) for child_i, child in children_sorted: increment = child.increment_x() if self.direction=='h' else child.increment_y() adjustment = increment * (excess_l//increment) if increment > 0 else excess_l children_extra[child_i] += adjustment excess_l -= adjustment adjust_l = 0 for extra, ((this_x, this_y), (this_w, this_h)), child in zip(children_extra, sizes, self.content): if self.direction == 'h': this_x += adjust_l this_w += extra else: this_y += adjust_l this_h += extra adjust_l += extra yield ((this_x, this_y), (this_x+this_w, this_y+this_h)), child def layout(self, length, unit=MM): out = [ eval_value(value, MM(length, unit)) for value in self.proportions ] total_length = sum(value for value in out if value is not None) if length - total_length < -1e-6: raise ValueError(f'Proportions sum to {total_length} mm, which is greater than the available space of {length} mm.') leftover = length - total_length sum_props = sum( (value or 1.0) for value in self.proportions if not isinstance(value, str) ) return [ unit(leftover * (value or 1.0) / sum_props if not isinstance(value, str) else calculated, MM) for value, calculated in zip(self.proportions, out) ] @property def single_sided(self): return all(elem.single_sided for elem in self.content) def __str__(self): children = ', '.join( f'{elem}:{width}' for elem, width in zip(self.content, self.proportions)) return f'PropLayout[{self.direction.upper()}]({children})' class TwoSideLayout: def __init__(self, top, bottom): self.top, self.bottom = top, bottom if not top.single_sided or not bottom.single_sided: warnings.warn('Two-sided pattern used on one side of a TwoSideLayout') def increment_x(self): return max(self.top.increment_x(), self.bottom.increment_x()) def increment_y(self): return max(self.top.increment_y(), self.bottom.increment_y()) def fit_size(self, w, h, unit=MM): w1, h1 = self.top.fit_size(w, h, unit) w2, h2 = self.bottom.fit_size(w, h, unit) if isinstance(self.top, EmptyProtoArea): if isinstance(self.bottom, EmptyProtoArea): return w1, h1 return w2, h2 if isinstance(self.bottom, EmptyProtoArea): return w1, h1 return max(w1, w2), max(h1, h2) def generate(self, bbox, border_text, keepouts, text_margin, two_sided, unit=MM): yield from self.top.generate(bbox, border_text, keepouts, text_margin, False, unit) for obj in self.bottom.generate(bbox, border_text, keepouts, text_margin, False, unit): obj.flip = not obj.flip yield obj def numeric(start=1): def gen(): nonlocal start for i in itertools.count(start): yield str(i) return gen def alphabetic(case='upper'): if case not in ('lower', 'upper'): raise ValueError('case must be one of "lower" or "upper".') index = string.ascii_lowercase if case == 'lower' else string.ascii_uppercase def gen(): nonlocal index for i in itertools.count(): if i<26: yield index[i] continue i -= 26 if i<26*26: yield index[i//26] + index[i%26] continue i -= 26*26 if i<26*26*26: yield index[i//(26*26)] + index[(i//26)%26] + index[i%26] else: raise ValueError('row/column index out of range') return gen class PatternProtoArea: def __init__(self, pitch_x, pitch_y=None, obj=None, numbers=True, font_size=None, font_stroke=None, number_x_gen=alphabetic(), number_y_gen=numeric(), interval_x=None, interval_y=None, margin=0, unit=MM): self.pitch_x = pitch_x self.pitch_y = pitch_y or pitch_x self.margin = margin self.obj = obj self.unit = unit self.numbers = numbers self.font_size = font_size or unit(1.0, MM) self.font_stroke = font_stroke or unit(0.2, MM) self.interval_x = interval_x self.interval_y = interval_y self.number_x_gen, self.number_y_gen = number_x_gen, number_y_gen def increment_x(self): return self.pitch_x def increment_y(self): return self.pitch_y def fit_size(self, w, h, unit=MM): (min_x, min_y), (max_x, max_y) = self.fit_rect(((0, 0), (max(0, w-2*self.margin), max(0, h-2*self.margin)))) return max_x-min_x + 2*self.margin, max_y-min_y + 2*self.margin def fit_rect(self, bbox, unit=MM): (x, y), (w, h) = bbox x, y = x+self.margin, y+self.margin w, h = w-x-self.margin, h-y-self.margin w_mod = round((w + 5e-7) % unit(self.pitch_x, self.unit), 6) h_mod = round((h + 5e-7) % unit(self.pitch_y, self.unit), 6) w_fit, h_fit = round(w - w_mod, 6), round(h - h_mod, 6) x = x + (w-w_fit)/2 y = y + (h-h_fit)/2 return (x, y), (x+w_fit, y+h_fit) def generate(self, bbox, border_text, keepouts, text_margin, two_sided, unit=MM): (x, y), (w, h) = bbox w, h = w-x, h-y n_x = int((w + 0.001)//unit(self.pitch_x, self.unit)) n_y = int((h + 0.001)//unit(self.pitch_y, self.unit)) off_x = (w - n_x*unit(self.pitch_x, self.unit)) / 2 off_y = (h - n_y*unit(self.pitch_y, self.unit)) / 2 if self.numbers: # Center row/column numbers in available margin. Note the swapped axes below - the Y (row) numbers are # centered in X direction, and vice versa. _idx, max_x_num = list(zip(range(n_x), self.number_x_gen()))[-1] _idx, max_y_num = list(zip(range(n_y), self.number_y_gen()))[-1] bbox_test_x = Text(0, 0, max_y_num, self.font_size, self.font_stroke, 'left', 'top', unit=self.unit) bbox_test_y = Text(0, 0, max_x_num, self.font_size, self.font_stroke, 'left', 'top', unit=self.unit) test_w = abs(bbox_test_x.bounding_box()[1][0] - bbox_test_x.bounding_box()[0][0]) test_h = abs(bbox_test_y.bounding_box()[1][1] - bbox_test_y.bounding_box()[0][1]) text_off_x = max(0, (off_x + text_margin - test_w)) / 2 text_off_y = max(0, (off_y + text_margin - test_h)) / 2 test_w = abs(bbox_test_y.bounding_box()[1][0] - bbox_test_y.bounding_box()[0][0]) test_h = abs(bbox_test_x.bounding_box()[1][1] - bbox_test_x.bounding_box()[0][1]) interval_x, interval_y = self.interval_x, self.interval_y if interval_x is None: interval_x = 1 if test_w < 0.8*self.pitch_x else 5 if interval_y is None: interval_y = 1 if test_h < 0.8*self.pitch_y else 2 for i, lno_i in list(zip(reversed(range(n_y)), self.number_y_gen())): if i == 0 or i == n_y - 1 or (i+1) % interval_y == 0: t_y = off_y + y + (n_y - 1 - i + 0.5) * self.pitch_y if border_text[3]: t_x = x + off_x - text_off_x yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'right', 'middle', unit=self.unit) if two_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'right', 'middle', flip=True, unit=self.unit) if border_text[1]: t_x = x + w - off_x + text_off_x yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'left', 'middle', unit=self.unit) if two_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'left', 'middle', flip=True, unit=self.unit) for i, lno_i in zip(range(n_x), self.number_x_gen()): # We print every interval'th number, as well as the first and the last numbers. # The complex condition below is to avoid the corner case where interval is larger than 1, and the last # interval'th number is right next to the last number, and the two could overlap. In this case, we # suppress the last interval'th number. if i == 0 or i == n_x - 1 or ((i+1) % interval_x == 0 and (interval_x == 1 or i != n_x-2)): t_x = off_x + x + (i + 0.5) * self.pitch_x if border_text[2]: t_y = y + off_y - text_off_y yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'top', unit=self.unit) if two_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'top', flip=True, unit=self.unit) if border_text[0]: t_y = y + h - off_y + text_off_y yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'bottom', unit=self.unit) if two_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'bottom', flip=True, unit=self.unit) for j in range(n_y): for i in range(n_x): x0 = off_x + x + i*self.pitch_x y0 = off_y + y + j*self.pitch_y x1 = x0 + self.pitch_x y1 = y0 + self.pitch_y border_n = (j == 0) or any(bbox_intersect(ko, ((x0, y0-self.pitch_y), (x1, y0))) for ko in keepouts) border_s = (j == n_y-1) or any(bbox_intersect(ko, ((x0, y1), (x1, y1+self.pitch_y))) for ko in keepouts) border_w = (i == 0) or any(bbox_intersect(ko, ((x0-self.pitch_x, y0), (x0, y1))) for ko in keepouts) border_e = (i == n_x-1) or any(bbox_intersect(ko, ((x1, y0), (x1+self.pitch_x, y1))) for ko in keepouts) border = (border_s, border_w, border_n, border_e) print({ (0, 0, 0, 0): '┼', (1, 0, 0, 0): '┴', (0, 1, 0, 0): '├', (0, 0, 1, 0): '┬', (0, 0, 0, 1): '┤', (1, 1, 0, 0): '└', (0, 1, 1, 0): '┌', (0, 0, 1, 1): '┐', (1, 0, 0, 1): '┘', }.get(tuple(map(int, border)), '.'), end=('' if i < n_x-1 else '\n')) if any(bbox_intersect(ko, ((x0, y0), (x1, y1))) for ko in keepouts): continue obj = self.obj if isinstance(obj, PadStack): if hasattr(obj, 'grid_variant'): obj = obj.grid_variant(i, j, border) if obj is None: continue px = self.unit(off_x + x, unit) + (i + 0.5) * self.pitch_x py = self.unit(off_y + y, unit) + (j + 0.5) * self.pitch_y yield Pad(px, py, pad_stack=obj, unit=self.unit) if two_sided and self.single_sided: yield Pad(px, py, pad_stack=obj, flip=True, unit=self.unit) continue elif hasattr(self.obj, 'inst'): inst = self.obj.inst(i, j, border) if not inst: continue else: inst = copy(self.obj) inst.x = inst.unit(off_x + x, unit) + (i + 0.5) * inst.unit(self.pitch_x, self.unit) inst.y = inst.unit(off_y + y, unit) + (j + 0.5) * inst.unit(self.pitch_y, self.unit) yield inst if two_sided and self.single_sided: inst = copy(inst) inst.flip = not inst.flip yield inst @property def single_sided(self): return self.obj.single_sided class EmptyProtoArea: def __init__(self, copper_fill=False): self.copper_fill = copper_fill def increment_x(self): return 0 def increment_y(self): return 0 def fit_size(self, w, h, unit=MM): return w, h def generate(self, bbox, border_text, keepouts, text_margin, two_sided, unit=MM): if self.copper_fill: (min_x, min_y), (max_x, max_y) = bbox group = ObjectGroup(0, 0, top_copper=[Region([(min_x, min_y), (max_x, min_y), (max_x, max_y), (min_x, max_y)], unit=unit, polarity_dark=True)]) if two_sided: group.bottom_copper = group.top_copper group.bounding_box = lambda *args, **kwargs: None yield group @property def single_sided(self): return True @dataclass(frozen=True, slots=True) class ManhattanPads(PadStack): w: float = None h: float = None gap: float = 0.2 @property def single_sided(self): return True @property def apertures(self): w = self.w h = self.h or w p = (w-2*self.gap)/2 q = (h-2*self.gap)/2 small_ap = RectangleAperture(p, q, unit=self.unit) s = min(w, h) / 2 / math.sqrt(2) large_ap = RectangleAperture(s, s, unit=self.unit).rotated(math.pi/4) large_ap_neg = RectangleAperture(s+2*self.gap, s+2*self.gap, unit=self.unit).rotated(math.pi/4) a = self.gap/2 + p/2 b = self.gap/2 + q/2 for layer in ('copper', 'mask'): yield PadStackAperture(small_ap, 'top', layer, -a, -b) yield PadStackAperture(small_ap, 'top', layer, -a, b) yield PadStackAperture(small_ap, 'top', layer, a, -b) yield PadStackAperture(small_ap, 'top', layer, a, b) yield PadStackAperture(large_ap_neg, 'top', layer, 0, 0, invert=True) yield PadStackAperture(large_ap, 'top', layer, 0, 0) @dataclass(frozen=True, slots=True) class RFGroundProto(PadStack): pitch: float = 2.54 drill: float = 0.9 clearance: float = 0.3 via_drill: float = 0.4 via_dia: float = 0.8 pad_dia: float = None trace_width: float = None _: KW_ONLY = None suppress_via: bool = False @property def single_sided(self): return False @property def apertures(self): unit = self.unit pitch = self.pitch trace_width, pad_dia = self.trace_width, self.pad_dia if pad_dia is None: if trace_width is None: trace_width = 0.3 pad_dia = pitch - trace_width - 2*self.clearance elif trace_width is None: trace_width = pitch - pad_dia - 2*self.clearance via_ap = RectangleAperture(self.via_dia, self.via_dia, unit=unit).rotated(math.pi/4) pad_ap = CircleAperture(pad_dia, unit=unit) pad_neg_ap = CircleAperture(pad_dia+2*self.clearance, unit=unit) ground_ap = RectangleAperture(pitch + unit(0.01, MM), pitch + unit(0.01, MM), unit=unit) pad_drill = ExcellonTool(self.drill, plated=True, unit=unit) via_drill = ExcellonTool(self.via_drill, plated=True, unit=unit) for side in 'top', 'bottom': yield PadStackAperture(ground_ap, side, 'copper') yield PadStackAperture(pad_neg_ap, side, 'copper', invert=True) yield PadStackAperture(pad_ap, side, 'copper') yield PadStackAperture(pad_ap, side, 'mask') if not self.suppress_via: yield PadStackAperture(via_ap, side, 'copper', pitch/2, pitch/2) yield PadStackAperture(via_ap, side, 'mask', pitch/2, pitch/2) yield PadStackAperture(pad_drill, 'drill', 'plated') if not self.suppress_via: yield PadStackAperture(via_drill, 'drill', 'plated', pitch/2, pitch/2) def grid_variant(self, x, y, border): border_s, border_w, border_n, border_e = border if border_e or border_s: return replace(self, suppress_via=True) else: return self @dataclass(frozen=True, slots=True) class THTFlowerProto(PadStack): pitch: float = 2.54 drill: float = 0.9 diameter: float = 2.0 clearance: float = 0.5 border_s: bool = False border_w: bool = False border_n: bool = False border_e: bool = False @property def single_sided(self): return False @property def apertures(self): p = self.diameter / 2 pad_dist_diag = math.sqrt(2) * (self.pitch - p) - self.drill pad_dist_ortho = 2*self.pitch - self.diameter - self.drill pad_dia = self.drill + max(0, min(pad_dist_diag, pad_dist_ortho) - self.clearance) pad = THTPad.circle(self.drill, pad_dia, paste=False, unit=self.unit) for ox, oy, brd in ((-p, 0, self.border_w), (p, 0, self.border_e), (0, -p, self.border_n), (0, p, self.border_s)): if not brd: for stack_ap in pad.apertures: yield replace(stack_ap, offset_x=ox, offset_y=oy) middle_ap = CircleAperture(self.diameter, unit=self.unit) for side in ('top', 'bottom'): for layer in ('copper', 'mask'): yield PadStackAperture(middle_ap, side, layer) def grid_variant(self, x, y, border): border_s, border_w, border_n, border_e = border if ((x % 2 == 0) and (y % 2 == 0)) or ((x % 2 == 1) and (y % 2 == 1)): return replace(self, border_s=border_s, border_w=border_w, border_n=border_n, border_e=border_e) return None # def bounding_box(self, unit=MM): # x, y, rotation = self.abs_pos # p = self.pitch/2 # return unit.convert_bounds_from(self.unit, ((x-p, y-p), (x+p, y+p))) class PoweredProto(Graphics): """ Cell primitive for "powered" THT breadboards. This cell type is based on regular THT pads in a 100 mil grid, but adds small SMD pads diagonally between the THT pads. These SMD pads are interconnected with traces and vias in such a way that every second one is inter-linked, forming two fully connected grids. Next to every THT pad you have one pad of each grid, so this layout is awesome for distributing power throughout the board. This design is based on one that Yajima Manufacturing Akizuki Denshi, Akihabara's finest electronics store sells for next to nothing. Sadly, they don't ship internationally and they don't even have an English website, but if you ever are in Akihabara, Tokyo, Japan I can *highly* recommend a visit. The ones Yajima make are better than what this will produce since the Yajima ones use a two-colored silkscreen to visually distinguish the two power pad grids. Links: Akizuki Denshi product page: https://akizukidenshi.com/catalog/g/gP-07214/ Yajima Manufacturing Corporation website: http://www.yajima-works.co.jp/index.html """ @property def single_sided(self): return False def __init__(self, pitch=None, drill=None, clearance=None, power_pad_dia=None, via_size=None, trace_width=None, unit=MM): super().__init__(0, 0) self.unit = unit self.pitch = pitch = pitch or unit(2.54, MM) self.drill = drill = drill or unit(0.9, MM) self.clearance = clearance = clearance or unit(0.3, MM) self.trace_width = trace_width = trace_width or unit(0.3, MM) self.via_size = via_size = via_size or unit(0.4, MM) main_pad_dia = pitch - trace_width - 2*clearance power_pad_dia_max = math.sqrt(2)*pitch - main_pad_dia - 2*clearance if power_pad_dia is None: power_pad_dia = power_pad_dia_max - clearance # reduce some more to give the user more room elif power_pad_dia > power_pad_dia_max: warnings.warn(f'Power pad diameter {power_pad_dia} > {power_pad_dia_max} violates pad-to-pad clearance') self.power_pad_dia = power_pad_dia main_ap = CircleAperture(main_pad_dia, unit=unit) power_ap = CircleAperture(self.power_pad_dia, unit=unit) for l in [self.top_copper, self.bottom_copper]: l.append(Flash(0, 0, aperture=main_ap, unit=unit)) l.append(Flash(-pitch/2, -pitch/2, aperture=power_ap, unit=unit)) l.append(Flash(-pitch/2, pitch/2, aperture=power_ap, unit=unit)) l.append(Flash( pitch/2, -pitch/2, aperture=power_ap, unit=unit)) l.append(Flash( pitch/2, pitch/2, aperture=power_ap, unit=unit)) self.drill_pth.append(Flash(0, 0, ExcellonTool(drill, plated=True, unit=unit), unit=unit)) self.drill_pth.append(Flash(-pitch/2, -pitch/2, ExcellonTool(via_size, plated=True, unit=unit), unit=unit)) self.top_mask = copy(self.top_copper) self.bottom_mask = copy(self.bottom_copper) self.line_ap = CircleAperture(trace_width, unit=unit) self.top_copper.append(Line(-pitch/2, -pitch/2, -pitch/2, pitch/2, aperture=self.line_ap, unit=unit)) self.top_copper.append(Line(pitch/2, -pitch/2, pitch/2, pitch/2, aperture=self.line_ap, unit=unit)) self.bottom_copper.append(Line(-pitch/2, -pitch/2, pitch/2, -pitch/2, aperture=self.line_ap, unit=unit)) self.bottom_copper.append(Line(-pitch/2, pitch/2, pitch/2, pitch/2, aperture=self.line_ap, unit=unit)) def inst(self, x, y, border): inst = copy(self) if (x + y) % 2 == 0: inst.drill_pth = inst.drill_pth[:-1] c = self.power_pad_dia/2 + self.clearance p = self.pitch/2 if x == 1: inst.top_silk = [Line(-p, -p+c, -p, p-c, aperture=self.line_ap, unit=self.unit)] elif x % 2 == 0: inst.top_silk = [Line(p, -p+c, p, p-c, aperture=self.line_ap, unit=self.unit)] if y == 0: inst.bottom_silk = [Line(-p+c, -p, p-c, -p, aperture=self.line_ap, unit=self.unit)] elif y % 2 == 1: inst.bottom_silk = [Line(-p+c, p, p-c, p, aperture=self.line_ap, unit=self.unit)] return inst def bounding_box(self, unit=MM): x, y, rotation, flip = self.abs_pos p = self.pitch/2 return unit.convert_bounds_from(self.unit, ((x-p, y-p), (x+p, y+p))) class SpikyProto(ObjectGroup): """ Cell primitive for the "spiky" protoboard designed by @electroniceel and published on github at the URL below. This layout has small-ish standard THT pads, but in between these pads it puts a grid of SMD pads that are designed for easy solder bridging to allow for the construction of traces from solder bridging. Github URL: https://github.com/electroniceel/protoboard """ def __init__(self, pitch=None, drill=None, clearance=None, power_pad_dia=None, via_size=None, trace_width=None, unit=MM): super().__init__(0, 0, unit=unit) res = importlib.resources.files(package_data) self.fp_center = kfp.Footprint.load(res.joinpath('center-pad-spikes.kicad_mod').read_text(encoding='utf-8')) self.corner_pad = kfp.FootprintInstance(1.27, 1.27, self.fp_center, unit=MM) self.pad = kfp.Footprint.load(res.joinpath('tht-0.8.kicad_mod').read_text(encoding='utf-8')) self.center_pad = kfp.FootprintInstance(0, 0, self.pad, unit=MM) self.fp_between = kfp.Footprint.load(res.joinpath('pad-between-spiked.kicad_mod').read_text(encoding='utf-8')) self.right_pad = kfp.FootprintInstance(1.27, 0, self.fp_between, unit=MM) self.top_pad = kfp.FootprintInstance(0, 1.27, self.fp_between, rotation=-math.pi/2, unit=MM) @property def objects(self): return [x for x in (self.center_pad, self.corner_pad, self.right_pad, self.top_pad) if x is not None] @objects.setter def objects(self, value): pass def inst(self, x, y, border): border_s, border_w, border_n, border_e = border inst = copy(self) if border_e: inst.corner_pad = inst.right_pad = None if border_s: inst.corner_pad = inst.top_pad = None return inst class AlioCell(Positioned): """ Cell primitive for the ALio protoboard designed by arief ibrahim adha and published on hackaday.io at the URL below. Similar to electroniceel's spiky protoboard, this layout has small-ish standard THT pads, but in between these pads it puts a grid of SMD pads that are designed for easy solder bridging to allow for the construction of traces from solder bridging. Hackaday.io URL: https://hackaday.io/project/28570/ """ def __init__(self, pitch=None, drill=None, clearance=None, link_pad_width=None, link_trace_width=None, via_size=None, unit=MM): super().__init__(0, 0, unit=unit) self.pitch = pitch or unit(2.54, MM) self.drill = drill or unit(0.9, MM) self.clearance = clearance or unit(0.3, MM) self.link_pad_width = link_pad_width or unit(1.1, MM) self.link_trace_width = link_trace_width or unit(0.5, MM) self.via_size = via_size or unit(0.4, MM) self.border_s, self.border_w, self.border_n, self.border_e = False, False, False, False self.inst_x, self.inst_y = None, None @property def single_sided(self): return False def inst(self, x, y, border): inst = copy(self) inst.border_s, inst.border_w, inst.border_n, inst.border_e = border inst.inst_x, inst.inst_y = x, y return inst def bounding_box(self, unit): x, y, rotation, flip = self.abs_pos # FIXME hack return self.unit.convert_bounds_to(unit, ((x-self.pitch/2, y-self.pitch/2), (x+self.pitch/2, y+self.pitch/2))) def render(self, layer_stack, cache=None): x, y, rotation, flip = self.abs_pos def xf(fe): fe = copy(fe) fe.rotate(rotation) fe.offset(x, y, self.unit) return fe var = ParameterExpression foo = VariableExpression(var(2)/2 - var(1)/2 + var(4)) bar = VariableExpression(var(4)+var(6)) # parameters: [1: total height = pad width, 2: pitch, 3: trace width, 4: corner radius, 5: rotation, 6: clearance] alio_main_macro = ApertureMacro('ALIOM', 6, primitives=( amp.CenterLine(MM, 1, var(2)-var(6), var(2)-var(3)-2*var(6), 0, 0, var(5)), amp.Outline(MM, 0, 5, ( -var(2)/2, -var(2)/2, -var(2)/2, -(foo-bar), -foo, -(foo-bar), -(foo-bar), -foo, -(foo-bar), -var(2)/2, -var(2)/2, -var(2)/2, ), var(5)), amp.Outline(MM, 0, 5, ( -var(2)/2, var(2)/2, -var(2)/2, (foo-bar), -foo, (foo-bar), -(foo-bar), foo, -(foo-bar), var(2)/2, -var(2)/2, var(2)/2, ), var(5)), amp.Outline(MM, 0, 5, ( var(2)/2, -var(2)/2, var(2)/2, -(foo-bar), foo, -(foo-bar), (foo-bar), -foo, (foo-bar), -var(2)/2, var(2)/2, -var(2)/2, ), var(5)), amp.Outline(MM, 0, 5, ( var(2)/2, var(2)/2, var(2)/2, (foo-bar), foo, (foo-bar), (foo-bar), foo, (foo-bar), var(2)/2, var(2)/2, var(2)/2, ), var(5)), amp.Circle(MM, 0, 2*bar, -foo, -foo, var(5)), amp.Circle(MM, 0, 2*bar, -foo, foo, var(5)), amp.Circle(MM, 0, 2*bar, foo, -foo, var(5)), amp.Circle(MM, 0, 2*bar, foo, foo, var(5)), )) corner_radius = (self.link_pad_width - self.link_trace_width)/3 main_ap = ApertureMacroInstance(alio_main_macro, (self.link_pad_width, # 1 self.pitch, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation, # 5 self.clearance), unit=MM) # 6 main_ap_90 = ApertureMacroInstance(alio_main_macro, (self.link_pad_width, # 1 self.pitch, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation-90, # 5 self.clearance), unit=MM) # 6 main_drill = ExcellonTool(self.drill, plated=True, unit=self.unit) via_drill = ExcellonTool(self.via_size, plated=True, unit=self.unit) # parameters: [1: total height = pad width, 2: total width, 3: trace width, 4: corner radius, 5: rotation] alio_macro = ApertureMacro('ALIOP', primitives=( amp.CenterLine(MM, 1, var(1)-2*var(4), var(1), 0, 0, var(5)), amp.CenterLine(MM, 1, var(1), var(1)-2*var(4), 0, 0, var(5)), amp.Circle(MM, 1, 2*var(4), -var(1)/2+var(4), -var(1)/2+var(4), var(5)), amp.Circle(MM, 1, 2*var(4), -var(1)/2+var(4), var(1)/2-var(4), var(5)), amp.Circle(MM, 1, 2*var(4), var(1)/2-var(4), -var(1)/2+var(4), var(5)), amp.Circle(MM, 1, 2*var(4), var(1)/2-var(4), var(1)/2-var(4), var(5)), amp.CenterLine(MM, 1, var(2), var(3), -var(2)/2 + var(1)/2, 0, var(5)), )) alio_dark = ApertureMacroInstance(alio_macro, (self.link_pad_width, # 1 self.pitch-self.clearance, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation), unit=MM) # 5 alio_dark_90 = ApertureMacroInstance(alio_macro, (self.link_pad_width, # 1 self.pitch-self.clearance, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation+90), unit=MM) # 5 end_pad = RectangleAperture(self.link_trace_width, self.pitch - 2*self.clearance - self.link_pad_width, unit=self.unit) end_pad_90 = end_pad.rotated(math.pi/2) # all layers are identical here for side, use in (('top', 'copper'), ('top', 'mask'), ('bottom', 'copper'), ('bottom', 'mask')): if side == 'top': layer_stack[side, use].objects.insert(0, xf(Flash(0, 0, aperture=main_ap, unit=self.unit))) if not self.border_s and not self.border_e: layer_stack[side, use].objects.append(xf(Flash(self.pitch/2, self.pitch/2, aperture=alio_dark, unit=self.unit))) if self.border_e and not self.border_s: layer_stack[side, use].objects.append(xf(Flash(0, self.pitch/2, aperture=end_pad_90, unit=self.unit))) else: layer_stack[side, use].objects.insert(0, xf(Flash(0, 0, aperture=main_ap_90, unit=self.unit))) if not self.border_e and not self.border_s: layer_stack[side, use].objects.append(xf(Flash(self.pitch/2, self.pitch/2, aperture=alio_dark_90, unit=self.unit))) if self.border_s and not self.border_e: layer_stack[side, use].objects.append(xf(Flash(self.pitch/2, 0, aperture=end_pad, unit=self.unit))) layer_stack.drill_pth.append(Flash(x, y, aperture=main_drill, unit=self.unit)) if not (self.border_e or self.border_s): layer_stack.drill_pth.append(xf(Flash(self.pitch/2, self.pitch/2, aperture=via_drill, unit=self.unit))) def convert_to_mm(value, unit): unitl = unit.lower() if unitl == 'mm': return value elif unitl == 'cm': return value*10 elif unitl == 'in': return value*25.4 elif unitl == 'mil': return value/1000*25.4 else: raise ValueError(f'Invalid unit {unit}, allowed units are mm, cm, in, and mil.') _VALUE_RE = re.compile('([0-9]*\.?[0-9]+)(cm|mm|in|mil|%)') def eval_value(value, total_length=None): if not isinstance(value, str): return None m = _VALUE_RE.match(value.lower()) number, unit = m.groups() if unit == '%': if total_length is None: raise ValueError('Percentages are not allowed for this value') return total_length * float(number) / 100 return convert_to_mm(float(number), unit) def _demo(): #pattern1 = PatternProtoArea(2.54, obj=THTPad.circle(0, 0, 0.9, 1.8, paste=False)) #pattern1 = PatternProtoArea(2.54, 2.54, obj=SpikyProto()) #pattern2 = PatternProtoArea(1.2, 2.0, obj=SMDPad.rect(0, 0, 1.0, 1.8, paste=False)) #pattern3 = PatternProtoArea(2.54, 1.27, obj=SMDPad.rect(0, 0, 2.3, 1.0, paste=False)) #pattern3 = EmptyProtoArea(copper_fill=True) #stack = TwoSideLayout(pattern2, pattern3) #pattern2 = PatternProtoArea(2.54, obj=PoweredProto(), margin=1) #pattern3 = PatternProtoArea(2.54, obj=RFGroundProto()) #stack = PropLayout([pattern2, pattern3], 'h', [0.5, 0.5]) #pattern = PropLayout([pattern1, stack], 'h', [0.5, 0.5]) #pattern = PatternProtoArea(2.54, obj=ManhattanPads(2.54)) #pattern = PatternProtoArea(2.54*1.5, obj=THTFlowerProto()) #pattern = PatternProtoArea(2.54, obj=THTPad.circle(0, 0, 0.9, 1.8, paste=False)) #pattern = PatternProtoArea(2.54, obj=PoweredProto()) pattern = PatternProtoArea(2.54, obj=AlioCell(), margin=2) pb = ProtoBoard(50, 47, pattern, mounting_hole_dia=3.2, mounting_hole_offset=5) #pb = ProtoBoard(10, 10, pattern1) print(pb.pretty_svg()) pb.layer_stack().save_to_directory('/tmp/testdir') if __name__ == '__main__': _demo() #cnt = alphabetic()() #for _ in range(32): # for _ in range(26): # print(f'{next(cnt):>2}', end=' ', file=sys.stderr) # print(file=sys.stderr)