import sys import re import math import string import itertools from copy import copy, deepcopy import warnings import importlib.resources from ..utils import MM, rotate_point from .primitives import * from ..graphic_objects import Region from ..apertures import RectangleAperture, CircleAperture, ApertureMacroInstance from ..aperture_macros.parse import ApertureMacro, ParameterExpression, VariableExpression from ..aperture_macros import primitive as amp from .kicad import footprints as kfp from . import data as package_data class ProtoBoard(Board): def __init__(self, w, h, content, margin=None, corner_radius=None, mounting_hole_dia=None, mounting_hole_offset=None, unit=MM): corner_radius = corner_radius or unit(1.5, MM) super().__init__(w, h, corner_radius, unit=unit) self.margin = margin or unit(2, MM) self.content = content if mounting_hole_dia: mounting_hole_offset = mounting_hole_offset or mounting_hole_dia*2 ko = mounting_hole_offset*2 stack = MechanicalHoleStack(mounting_hole_dia, unit=unit) self.add(Pad(mounting_hole_offset, mounting_hole_offset, pad_stack=stack, unit=unit)) self.add(Pad(w-mounting_hole_offset, mounting_hole_offset, pad_stack=stack, unit=unit)) self.add(Pad(mounting_hole_offset, h-mounting_hole_offset, pad_stack=stack, unit=unit)) self.add(Pad(w-mounting_hole_offset, h-mounting_hole_offset, pad_stack=stack, unit=unit)) self.keepouts.append(((0, 0), (ko, ko))) self.keepouts.append(((w-ko, 0), (w, ko))) self.keepouts.append(((0, h-ko), (ko, h))) self.keepouts.append(((w-ko, h-ko), (w, h))) self.generate() def generate(self, unit=MM): bbox = ((self.margin, self.margin), (self.w-self.margin, self.h-self.margin)) bbox = unit.convert_bounds_from(self.unit, bbox) for obj in self.content.generate(bbox, (True, True, True, True), unit): self.add(obj, keepout_errors='skip') class PropLayout: def __init__(self, content, direction, proportions): self.content = list(content) if direction not in ('h', 'v'): raise ValueError('direction must be one of "h", or "v".') self.direction = direction self.proportions = list(proportions) if len(content) != len(proportions): raise ValueError('proportions and content must have same length') def generate(self, bbox, border_text, unit=MM): for i, (bbox, child) in enumerate(self.layout_2d(bbox, unit)): first = bool(i == 0) last = bool(i == len(self.content)-1) yield from child.generate(bbox, ( border_text[0] and (last or self.direction == 'h'), border_text[1] and (last or self.direction == 'v'), border_text[2] and (first or self.direction == 'h'), border_text[3] and (first or self.direction == 'v'), ), unit) def fit_size(self, w, h, unit=MM): widths = [] heights = [] for ((x_min, y_min), (x_max, y_max)), child in self.layout_2d(((0, 0), (w, h)), unit): if not isinstance(child, EmptyProtoArea): widths.append(x_max - x_min) heights.append(y_max - y_min) if self.direction == 'h': return sum(widths), max(heights, default=0) else: return max(widths, default=0), sum(heights) def layout_2d(self, bbox, unit=MM): (x, y), (w, h) = bbox w, h = w-x, h-y actual_l = 0 target_l = 0 for l, child in zip(self.layout(w if self.direction == 'h' else h, unit), self.content): this_x, this_y = x, y this_w, this_h = w, h target_l += l if self.direction == 'h': this_w = target_l - actual_l else: this_h = target_l - actual_l this_w, this_h = child.fit_size(this_w, this_h, unit) if self.direction == 'h': x += this_w actual_l += this_w this_h = h else: y += this_h actual_l += this_h this_w = w yield ((this_x, this_y), (this_x+this_w, this_y+this_h)), child def layout(self, length, unit=MM): out = [ eval_value(value, MM(length, unit)) for value in self.proportions ] total_length = sum(value for value in out if value is not None) if length - total_length < -1e-6: raise ValueError(f'Proportions sum to {total_length} mm, which is greater than the available space of {length} mm.') leftover = length - total_length sum_props = sum( (value or 1.0) for value in self.proportions if not isinstance(value, str) ) return [ unit(leftover * (value or 1.0) / sum_props if not isinstance(value, str) else calculated, MM) for value, calculated in zip(self.proportions, out) ] @property def single_sided(self): return all(elem.single_sided for elem in self.content) def __str__(self): children = ', '.join( f'{elem}:{width}' for elem, width in zip(self.content, self.proportions)) return f'PropLayout[{self.direction.upper()}]({children})' class TwoSideLayout: def __init__(self, top, bottom): self.top, self.bottom = top, bottom if not top.single_sided or not bottom.single_sided: warnings.warn('Two-sided pattern used on one side of a TwoSideLayout') def fit_size(self, w, h, unit=MM): w1, h1 = self.top.fit_size(w, h, unit) w2, h2 = self.bottom.fit_size(w, h, unit) if isinstance(self.top, EmptyProtoArea): if isinstance(self.bottom, EmptyProtoArea): return w1, h1 return w2, h2 if isinstance(self.bottom, EmptyProtoArea): return w1, h1 return max(w1, w2), max(h1, h2) def generate(self, bbox, border_text, unit=MM): yield from self.top.generate(bbox, border_text, unit) for obj in self.bottom.generate(bbox, border_text, unit): obj.side = 'bottom' yield obj def numeric(start=1): def gen(): nonlocal start for i in itertools.count(start): yield str(i) return gen def alphabetic(case='upper'): if case not in ('lower', 'upper'): raise ValueError('case must be one of "lower" or "upper".') index = string.ascii_lowercase if case == 'lower' else string.ascii_uppercase def gen(): nonlocal index for i in itertools.count(): if i<26: yield index[i] continue i -= 26 if i<26*26: yield index[i//26] + index[i%26] continue i -= 26*26 if i<26*26*26: yield index[i//(26*26)] + index[(i//26)%26] + index[i%26] else: raise ValueError('row/column index out of range') return gen class PatternProtoArea: def __init__(self, pitch_x, pitch_y=None, obj=None, numbers=True, font_size=None, font_stroke=None, number_x_gen=alphabetic(), number_y_gen=numeric(), interval_x=5, interval_y=None, margin=0, unit=MM): self.pitch_x = pitch_x self.pitch_y = pitch_y or pitch_x self.margin = margin self.obj = obj self.unit = unit self.numbers = numbers self.font_size = font_size or unit(1.0, MM) self.font_stroke = font_stroke or unit(0.2, MM) self.interval_x = interval_x self.interval_y = interval_y or (1 if MM(self.pitch_y, unit) >= 2.0 else 5) self.number_x_gen, self.number_y_gen = number_x_gen, number_y_gen def fit_size(self, w, h, unit=MM): (min_x, min_y), (max_x, max_y) = self.fit_rect(((0, 0), (max(0, w-2*self.margin), max(0, h-2*self.margin)))) return max_x-min_x + 2*self.margin, max_y-min_y + 2*self.margin def fit_rect(self, bbox, unit=MM): (x, y), (w, h) = bbox x, y = x+self.margin, y+self.margin w, h = w-x-self.margin, h-y-self.margin w_mod = round((w + 5e-7) % unit(self.pitch_x, self.unit), 6) h_mod = round((h + 5e-7) % unit(self.pitch_y, self.unit), 6) w_fit, h_fit = round(w - w_mod, 6), round(h - h_mod, 6) x = x + (w-w_fit)/2 y = y + (h-h_fit)/2 return (x, y), (x+w_fit, y+h_fit) def generate(self, bbox, border_text, unit=MM): (x, y), (w, h) = bbox w, h = w-x, h-y n_x = int(w//unit(self.pitch_x, self.unit)) n_y = int(h//unit(self.pitch_y, self.unit)) off_x = (w % unit(self.pitch_x, self.unit)) / 2 off_y = (h % unit(self.pitch_y, self.unit)) / 2 if self.numbers: for i, lno_i in list(zip(reversed(range(n_y)), self.number_y_gen())): if i == 0 or i == n_y - 1 or (i+1) % self.interval_y == 0: t_y = off_y + y + (n_y - 1 - i + 0.5) * self.pitch_y if border_text[3]: t_x = x + off_x yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'right', 'middle', unit=self.unit) if not self.single_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'right', 'middle', flip=True, unit=self.unit) if border_text[1]: t_x = x + w - off_x yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'left', 'middle', unit=self.unit) if not self.single_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'left', 'middle', flip=True, unit=self.unit) for i, lno_i in zip(range(n_x), self.number_x_gen()): if i == 0 or i == n_x - 1 or (i+1) % self.interval_x == 0: t_x = off_x + x + (i + 0.5) * self.pitch_x if border_text[2]: t_y = y + off_y yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'top', unit=self.unit) if not self.single_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'top', flip=True, unit=self.unit) if border_text[0]: t_y = y + h + off_y yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'bottom', unit=self.unit) if not self.single_sided: yield Text(t_x, t_y, lno_i, self.font_size, self.font_stroke, 'center', 'bottom', flip=True, unit=self.unit) for i in range(n_x): for j in range(n_y): if isinstance(self.obj, PadStack): obj = self.obj.grid_variant(i, j, i == n_x-1, j == n_y-1) if obj is None: continue px = self.unit(off_x + x, unit) + (i + 0.5) * self.pitch_x py = self.unit(off_y + y, unit) + (j + 0.5) * self.pitch_y yield Pad(px, py, pad_stack=obj, unit=self.unit) continue elif hasattr(self.obj, 'inst'): inst = self.obj.inst(i, j, i == n_x-1, j == n_y-1) if not inst: continue else: inst = copy(self.obj) inst.x = inst.unit(off_x + x, unit) + (i + 0.5) * inst.unit(self.pitch_x, self.unit) inst.y = inst.unit(off_y + y, unit) + (j + 0.5) * inst.unit(self.pitch_y, self.unit) yield inst @property def single_sided(self): return self.obj.single_sided class EmptyProtoArea: def __init__(self, copper_fill=False): self.copper_fill = copper_fill def fit_size(self, w, h, unit=MM): return w, h def generate(self, bbox, border_text, unit=MM): if self.copper_fill: (min_x, min_y), (max_x, max_y) = bbox group = ObjectGroup(0, 0, top_copper=[Region([(min_x, min_y), (max_x, min_y), (max_x, max_y), (min_x, max_y)], unit=unit, polarity_dark=True)]) group.bounding_box = lambda *args, **kwargs: None yield group @property def single_sided(self): return True @dataclass(frozen=True, slots=True) class ManhattanPads(PadStack): w: float = None h: float = None gap: float = 0.2 @property def apertures(self): w = self.w h = self.h or w p = (w-2*self.gap)/2 q = (h-2*self.gap)/2 small_ap = RectangleAperture(p, q, unit=self.unit) s = min(w, h) / 2 / math.sqrt(2) large_ap = RectangleAperture(s, s, unit=self.unit).rotated(math.pi/4) large_ap_neg = RectangleAperture(s+2*self.gap, s+2*self.gap, unit=self.unit).rotated(math.pi/4) a = self.gap/2 + p/2 b = self.gap/2 + q/2 for layer in ('copper', 'mask'): yield PadStackAperture(small_ap, 'top', layer, -a, -b) yield PadStackAperture(small_ap, 'top', layer, -a, b) yield PadStackAperture(small_ap, 'top', layer, a, -b) yield PadStackAperture(small_ap, 'top', layer, a, b) yield PadStackAperture(large_ap_neg, 'top', layer, 0, 0, invert=True) yield PadStackAperture(large_ap, 'top', layer, 0, 0) @dataclass(frozen=True, slots=True) class RFGroundProto(PadStack): pitch: float = 2.54 drill: float = 0.9 clearance: float = 0.3 via_drill: float = 0.4 via_dia: float = 0.8 pad_dia: float = None trace_width: float = None _: KW_ONLY = None suppress_via: bool = False @property def apertures(self): unit = self.unit pitch = self.pitch trace_width, pad_dia = self.trace_width, self.pad_dia if pad_dia is None: if trace_width is None: trace_width = 0.3 pad_dia = pitch - trace_width - 2*self.clearance elif trace_width is None: trace_width = pitch - pad_dia - 2*self.clearance via_ap = RectangleAperture(self.via_dia, self.via_dia, unit=unit).rotated(math.pi/4) pad_ap = CircleAperture(pad_dia, unit=unit) pad_neg_ap = CircleAperture(pad_dia+2*self.clearance, unit=unit) ground_ap = RectangleAperture(pitch + unit(0.01, MM), pitch + unit(0.01, MM), unit=unit) pad_drill = ExcellonTool(self.drill, plated=True, unit=unit) via_drill = ExcellonTool(self.via_drill, plated=True, unit=unit) for side in 'top', 'bottom': yield PadStackAperture(ground_ap, side, 'copper') yield PadStackAperture(pad_neg_ap, side, 'copper', invert=True) yield PadStackAperture(pad_ap, side, 'copper') yield PadStackAperture(pad_ap, side, 'mask') if not self.suppress_via: yield PadStackAperture(via_ap, side, 'copper', pitch/2, pitch/2) yield PadStackAperture(via_ap, side, 'mask', pitch/2, pitch/2) yield PadStackAperture(pad_drill, 'drill', 'plated') if not self.suppress_via: yield PadStackAperture(via_drill, 'drill', 'plated', pitch/2, pitch/2) def grid_variant(self, x, y, border_x, border_y): if border_x or border_y: return replace(self, suppress_via=True) else: return self @dataclass(frozen=True, slots=True) class THTFlowerProto(PadStack): pitch: float = 2.54 drill: float = 0.9 diameter: float = 2.0 @property def apertures(self): p = self.pitch / 2 pad = THTPad.circle(self.drill, self.diameter, paste=False, unit=self.unit) for ox, oy in ((-p, 0), (p, 0), (0, -p), (0, p)): for stack_ap in pad.apertures: yield replace(stack_ap, offset_x=ox, offset_y=oy) middle_ap = CircleAperture(self.diameter, unit=self.unit) for side in ('top', 'bottom'): for layer in ('copper', 'mask'): yield PadStackAperture(middle_ap, side, layer) def grid_variant(self, x, y, border_x, border_y): if (x % 2 == 0) and (y % 2 == 0): return self if (x % 2 == 1) and (y % 2 == 1): return self return None # def bounding_box(self, unit=MM): # x, y, rotation = self.abs_pos # p = self.pitch/2 # return unit.convert_bounds_from(self.unit, ((x-p, y-p), (x+p, y+p))) class PoweredProto(Graphics): """ Cell primitive for "powered" THT breadboards. This cell type is based on regular THT pads in a 100 mil grid, but adds small SMD pads diagonally between the THT pads. These SMD pads are interconnected with traces and vias in such a way that every second one is inter-linked, forming two fully connected grids. Next to every THT pad you have one pad of each grid, so this layout is awesome for distributing power throughout the board. This design is based on one that Yajima Manufacturing Akizuki Denshi, Akihabara's finest electronics store sells for next to nothing. Sadly, they don't ship internationally and they don't even have an English website, but if you ever are in Akihabara, Tokyo, Japan I can *highly* recommend a visit. The ones Yajima make are better than what this will produce since the Yajima ones use a two-colored silkscreen to visually distinguish the two power pad grids. Links: Akizuki Denshi product page: https://akizukidenshi.com/catalog/g/gP-07214/ Yajima Manufacturing Corporation website: http://www.yajima-works.co.jp/index.html """ def __init__(self, pitch=None, drill=None, clearance=None, power_pad_dia=None, via_size=None, trace_width=None, unit=MM): super().__init__(0, 0) self.unit = unit self.pitch = pitch = pitch or unit(2.54, MM) self.drill = drill = drill or unit(0.9, MM) self.clearance = clearance = clearance or unit(0.3, MM) self.trace_width = trace_width = trace_width or unit(0.3, MM) self.via_size = via_size = via_size or unit(0.4, MM) main_pad_dia = pitch - trace_width - 2*clearance power_pad_dia_max = math.sqrt(2)*pitch - main_pad_dia - 2*clearance if power_pad_dia is None: power_pad_dia = power_pad_dia_max - clearance # reduce some more to give the user more room elif power_pad_dia > power_pad_dia_max: warnings.warn(f'Power pad diameter {power_pad_dia} > {power_pad_dia_max} violates pad-to-pad clearance') self.power_pad_dia = power_pad_dia main_ap = CircleAperture(main_pad_dia, unit=unit) power_ap = CircleAperture(self.power_pad_dia, unit=unit) for l in [self.top_copper, self.bottom_copper]: l.append(Flash(0, 0, aperture=main_ap, unit=unit)) l.append(Flash(-pitch/2, -pitch/2, aperture=power_ap, unit=unit)) l.append(Flash(-pitch/2, pitch/2, aperture=power_ap, unit=unit)) l.append(Flash( pitch/2, -pitch/2, aperture=power_ap, unit=unit)) l.append(Flash( pitch/2, pitch/2, aperture=power_ap, unit=unit)) self.drill_pth.append(Flash(0, 0, ExcellonTool(drill, plated=True, unit=unit), unit=unit)) self.drill_pth.append(Flash(-pitch/2, -pitch/2, ExcellonTool(via_size, plated=True, unit=unit), unit=unit)) self.top_mask = copy(self.top_copper) self.bottom_mask = copy(self.bottom_copper) self.line_ap = CircleAperture(trace_width, unit=unit) self.top_copper.append(Line(-pitch/2, -pitch/2, -pitch/2, pitch/2, aperture=self.line_ap, unit=unit)) self.top_copper.append(Line(pitch/2, -pitch/2, pitch/2, pitch/2, aperture=self.line_ap, unit=unit)) self.bottom_copper.append(Line(-pitch/2, -pitch/2, pitch/2, -pitch/2, aperture=self.line_ap, unit=unit)) self.bottom_copper.append(Line(-pitch/2, pitch/2, pitch/2, pitch/2, aperture=self.line_ap, unit=unit)) def inst(self, x, y, border_x, border_y): inst = copy(self) if (x + y) % 2 == 0: inst.drill_pth = inst.drill_pth[:-1] c = self.power_pad_dia/2 + self.clearance p = self.pitch/2 if x == 1: inst.top_silk = [Line(-p, -p+c, -p, p-c, aperture=self.line_ap, unit=self.unit)] elif x % 2 == 0: inst.top_silk = [Line(p, -p+c, p, p-c, aperture=self.line_ap, unit=self.unit)] if y == 0: inst.bottom_silk = [Line(-p+c, -p, p-c, -p, aperture=self.line_ap, unit=self.unit)] elif y % 2 == 1: inst.bottom_silk = [Line(-p+c, p, p-c, p, aperture=self.line_ap, unit=self.unit)] return inst def bounding_box(self, unit=MM): x, y, rotation, flip = self.abs_pos p = self.pitch/2 return unit.convert_bounds_from(self.unit, ((x-p, y-p), (x+p, y+p))) class SpikyProto(ObjectGroup): """ Cell primitive for the "spiky" protoboard designed by @electroniceel and published on github at the URL below. This layout has small-ish standard THT pads, but in between these pads it puts a grid of SMD pads that are designed for easy solder bridging to allow for the construction of traces from solder bridging. Github URL: https://github.com/electroniceel/protoboard """ def __init__(self, pitch=None, drill=None, clearance=None, power_pad_dia=None, via_size=None, trace_width=None, unit=MM): super().__init__(0, 0, unit=unit) res = importlib.resources.files(package_data) self.fp_center = kfp.Footprint.load(res.joinpath('center-pad-spikes.kicad_mod').read_text(encoding='utf-8')) self.corner_pad = kfp.FootprintInstance(1.27, 1.27, self.fp_center, unit=MM) self.pad = kfp.Footprint.load(res.joinpath('tht-0.8.kicad_mod').read_text(encoding='utf-8')) self.center_pad = kfp.FootprintInstance(0, 0, self.pad, unit=MM) self.fp_between = kfp.Footprint.load(res.joinpath('pad-between-spiked.kicad_mod').read_text(encoding='utf-8')) self.right_pad = kfp.FootprintInstance(1.27, 0, self.fp_between, unit=MM) self.top_pad = kfp.FootprintInstance(0, 1.27, self.fp_between, rotation=math.pi/2, unit=MM) @property def objects(self): return [x for x in (self.center_pad, self.corner_pad, self.right_pad, self.top_pad) if x is not None] @objects.setter def objects(self, value): pass def inst(self, x, y, border_x, border_y): inst = copy(self) if border_x: inst.corner_pad = inst.right_pad = None if border_y: inst.corner_pad = inst.top_pad = None return inst class AlioCell(Positioned): """ Cell primitive for the ALio protoboard designed by arief ibrahim adha and published on hackaday.io at the URL below. Similar to electroniceel's spiky protoboard, this layout has small-ish standard THT pads, but in between these pads it puts a grid of SMD pads that are designed for easy solder bridging to allow for the construction of traces from solder bridging. Hackaday.io URL: https://hackaday.io/project/28570/ """ def __init__(self, pitch=None, drill=None, clearance=None, link_pad_width=None, link_trace_width=None, via_size=None, unit=MM): super().__init__(0, 0, unit=unit) self.pitch = pitch or unit(2.54, MM) self.drill = drill or unit(0.9, MM) self.clearance = clearance or unit(0.3, MM) self.link_pad_width = link_pad_width or unit(1.1, MM) self.link_trace_width = link_trace_width or unit(0.5, MM) self.via_size = via_size or unit(0.4, MM) self.border_x, self.border_y = False, False self.inst_x, self.inst_y = None, None @property def single_sided(self): return False def inst(self, x, y, border_x, border_y): inst = copy(self) inst.border_x, inst.border_y = border_x, border_y inst.inst_x, inst.inst_y = x, y return inst def bounding_box(self, unit): x, y, rotation, flip = self.abs_pos # FIXME hack return self.unit.convert_bounds_to(unit, ((x-self.pitch/2, y-self.pitch/2), (x+self.pitch/2, y+self.pitch/2))) def render(self, layer_stack, cache=None): x, y, rotation, flip = self.abs_pos def xf(fe): fe = copy(fe) fe.rotate(rotation) fe.offset(x, y, self.unit) return fe var = ParameterExpression foo = VariableExpression(var(2)/2 - var(1)/2 + var(4)) bar = VariableExpression(var(4)+var(6)) # parameters: [1: total height = pad width, 2: pitch, 3: trace width, 4: corner radius, 5: rotation, 6: clearance] alio_main_macro = ApertureMacro('ALIOM', 6, primitives=( amp.CenterLine(MM, 1, var(2)-var(6), var(2)-var(3)-2*var(6), 0, 0, var(5)), amp.Outline(MM, 0, 5, ( -var(2)/2, -var(2)/2, -var(2)/2, -(foo-bar), -foo, -(foo-bar), -(foo-bar), -foo, -(foo-bar), -var(2)/2, -var(2)/2, -var(2)/2, ), var(5)), amp.Outline(MM, 0, 5, ( -var(2)/2, var(2)/2, -var(2)/2, (foo-bar), -foo, (foo-bar), -(foo-bar), foo, -(foo-bar), var(2)/2, -var(2)/2, var(2)/2, ), var(5)), amp.Outline(MM, 0, 5, ( var(2)/2, -var(2)/2, var(2)/2, -(foo-bar), foo, -(foo-bar), (foo-bar), -foo, (foo-bar), -var(2)/2, var(2)/2, -var(2)/2, ), var(5)), amp.Outline(MM, 0, 5, ( var(2)/2, var(2)/2, var(2)/2, (foo-bar), foo, (foo-bar), (foo-bar), foo, (foo-bar), var(2)/2, var(2)/2, var(2)/2, ), var(5)), amp.Circle(MM, 0, 2*bar, -foo, -foo, var(5)), amp.Circle(MM, 0, 2*bar, -foo, foo, var(5)), amp.Circle(MM, 0, 2*bar, foo, -foo, var(5)), amp.Circle(MM, 0, 2*bar, foo, foo, var(5)), )) corner_radius = (self.link_pad_width - self.link_trace_width)/3 main_ap = ApertureMacroInstance(alio_main_macro, (self.link_pad_width, # 1 self.pitch, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation, # 5 self.clearance), unit=MM) # 6 main_ap_90 = ApertureMacroInstance(alio_main_macro, (self.link_pad_width, # 1 self.pitch, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation-90, # 5 self.clearance), unit=MM) # 6 main_drill = ExcellonTool(self.drill, plated=True, unit=self.unit) via_drill = ExcellonTool(self.via_size, plated=True, unit=self.unit) # parameters: [1: total height = pad width, 2: total width, 3: trace width, 4: corner radius, 5: rotation] alio_macro = ApertureMacro('ALIOP', primitives=( amp.CenterLine(MM, 1, var(1)-2*var(4), var(1), 0, 0, var(5)), amp.CenterLine(MM, 1, var(1), var(1)-2*var(4), 0, 0, var(5)), amp.Circle(MM, 1, 2*var(4), -var(1)/2+var(4), -var(1)/2+var(4), var(5)), amp.Circle(MM, 1, 2*var(4), -var(1)/2+var(4), var(1)/2-var(4), var(5)), amp.Circle(MM, 1, 2*var(4), var(1)/2-var(4), -var(1)/2+var(4), var(5)), amp.Circle(MM, 1, 2*var(4), var(1)/2-var(4), var(1)/2-var(4), var(5)), amp.CenterLine(MM, 1, var(2), var(3), -var(2)/2 + var(1)/2, 0, var(5)), )) alio_dark = ApertureMacroInstance(alio_macro, (self.link_pad_width, # 1 self.pitch-self.clearance, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation), unit=MM) # 5 alio_dark_90 = ApertureMacroInstance(alio_macro, (self.link_pad_width, # 1 self.pitch-self.clearance, # 2 self.link_trace_width, # 3 corner_radius, # 4 rotation+90), unit=MM) # 5 # all layers are identical here for side, use in (('top', 'copper'), ('top', 'mask'), ('bottom', 'copper'), ('bottom', 'mask')): if side == 'top': layer_stack[side, use].objects.insert(0, xf(Flash(0, 0, aperture=main_ap, unit=self.unit))) if not self.border_y: layer_stack[side, use].objects.append(xf(Flash(self.pitch/2, self.pitch/2, aperture=alio_dark, unit=self.unit))) else: layer_stack[side, use].objects.insert(0, xf(Flash(0, 0, aperture=main_ap_90, unit=self.unit))) if not self.border_x: layer_stack[side, use].objects.append(xf(Flash(self.pitch/2, self.pitch/2, aperture=alio_dark_90, unit=self.unit))) layer_stack.drill_pth.append(Flash(x, y, aperture=main_drill, unit=self.unit)) if not (self.border_x or self.border_y): layer_stack.drill_pth.append(xf(Flash(self.pitch/2, self.pitch/2, aperture=via_drill, unit=self.unit))) def convert_to_mm(value, unit): unitl = unit.lower() if unitl == 'mm': return value elif unitl == 'cm': return value*10 elif unitl == 'in': return value*25.4 elif unitl == 'mil': return value/1000*25.4 else: raise ValueError(f'Invalid unit {unit}, allowed units are mm, cm, in, and mil.') _VALUE_RE = re.compile('([0-9]*\.?[0-9]+)(cm|mm|in|mil|%)') def eval_value(value, total_length=None): if not isinstance(value, str): return None m = _VALUE_RE.match(value.lower()) number, unit = m.groups() if unit == '%': if total_length is None: raise ValueError('Percentages are not allowed for this value') return total_length * float(number) / 100 return convert_to_mm(float(number), unit) def _demo(): #pattern1 = PatternProtoArea(2.54, obj=THTPad.circle(0, 0, 0.9, 1.8, paste=False)) #pattern1 = PatternProtoArea(2.54, 2.54, obj=SpikyProto()) #pattern2 = PatternProtoArea(1.2, 2.0, obj=SMDPad.rect(0, 0, 1.0, 1.8, paste=False)) #pattern3 = PatternProtoArea(2.54, 1.27, obj=SMDPad.rect(0, 0, 2.3, 1.0, paste=False)) #pattern3 = EmptyProtoArea(copper_fill=True) #stack = TwoSideLayout(pattern2, pattern3) #pattern2 = PatternProtoArea(2.54, obj=PoweredProto(), margin=1) #pattern3 = PatternProtoArea(2.54, obj=RFGroundProto()) #stack = PropLayout([pattern2, pattern3], 'h', [0.5, 0.5]) #pattern = PropLayout([pattern1, stack], 'h', [0.5, 0.5]) #pattern = PatternProtoArea(2.54, obj=ManhattanPads(2.54)) #pattern = PatternProtoArea(2.54*1.5, obj=THTFlowerProto()) #pattern = PatternProtoArea(2.54, obj=THTPad.circle(0, 0, 0.9, 1.8, paste=False)) #pattern = PatternProtoArea(2.54, obj=PoweredProto()) pattern = PatternProtoArea(2.54, obj=AlioCell(), margin=2) pb = ProtoBoard(50, 47, pattern, mounting_hole_dia=3.2, mounting_hole_offset=5) #pb = ProtoBoard(10, 10, pattern1) print(pb.pretty_svg()) pb.layer_stack().save_to_directory('/tmp/testdir') if __name__ == '__main__': _demo() #cnt = alphabetic()() #for _ in range(32): # for _ in range(26): # print(f'{next(cnt):>2}', end=' ', file=sys.stderr) # print(file=sys.stderr)