#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2021 Jan Sebastian Götte from dataclasses import dataclass, field, replace import operator import re import ast import copy import math from . import primitive as ap from .expression import * from ..utils import MM # we make our own here instead of using math.degrees to make sure this works with expressions, too. def rad_to_deg(x): return (x / math.pi) * 180 def _map_expression(node): if isinstance(node, ast.Num): return ConstantExpression(node.n) elif isinstance(node, ast.BinOp): op_map = {ast.Add: operator.add, ast.Sub: operator.sub, ast.Mult: operator.mul, ast.Div: operator.truediv} return OperatorExpression(op_map[type(node.op)], _map_expression(node.left), _map_expression(node.right)) elif isinstance(node, ast.UnaryOp): if type(node.op) == ast.UAdd: return _map_expression(node.operand) else: return OperatorExpression(operator.sub, ConstantExpression(0), _map_expression(node.operand)) elif isinstance(node, ast.Name): return VariableExpression(int(node.id[3:])) # node.id has format var[0-9]+ else: raise SyntaxError('Invalid aperture macro expression') def _parse_expression(expr): expr = expr.lower().replace('x', '*') expr = re.sub(r'\$([0-9]+)', r'var\1', expr) try: parsed = ast.parse(expr, mode='eval').body except SyntaxError as e: raise SyntaxError('Invalid aperture macro expression') from e return _map_expression(parsed) @dataclass(frozen=True, slots=True) class ApertureMacro: name: str = field(default=None, hash=False, compare=False) primitives: tuple = () variables: tuple = () comments: tuple = field(default=(), hash=False, compare=False) def __post_init__(self): if self.name is None or re.match(r'GNX[0-9A-F]{16}', self.name): # We can't use field(default_factory=...) here because that factory doesn't get a reference to the instance. self._reset_name() def _reset_name(self): object.__setattr__(self, 'name', f'GNX{hash(self)&0xffffffffffffffff:016X}') @classmethod def parse_macro(kls, macro_name, body, unit): comments = [] variables = {} primitives = [] blocks = body.split('*') for block in blocks: if not (block := block.strip()): # empty block continue if block.startswith('0 '): # comment comments.append(block[2:]) continue block = re.sub(r'\s', '', block) if block[0] == '$': # variable definition name, expr = block.partition('=') number = int(name[1:]) if number in variables: raise SyntaxError(f'Re-definition of aperture macro variable {number} inside macro') variables[number] = _parse_expression(expr) else: # primitive primitive, *args = block.split(',') args = [ _parse_expression(arg) for arg in args ] primitives.append(ap.PRIMITIVE_CLASSES[int(primitive)].from_arglist(unit, args)) variables = [variables.get(i+1) for i in range(max(variables.keys(), default=0))] return kls(macro_name, tuple(primitives), tuple(variables), tuple(comments)) def __str__(self): return f'' def __repr__(self): return str(self) def dilated(self, offset, unit=MM): new_primitives = [] for primitive in self.primitives: try: if primitive.exposure.calculate(): new_primitives += primitive.dilated(offset, unit) except IndexError: warnings.warn('Cannot dilate aperture macro primitive with exposure value computed from macro variable.') pass return replace(self, primitives=tuple(new_primitives)) def to_gerber(self, unit=None): """ Serialize this macro's content (without the name) into Gerber using the given file unit """ comments = [ f'0 {c.replace("*", "_").replace("%", "_")}' for c in self.comments ] variable_defs = [ f'${var}={str(expr)[1:-1]}' for var, expr in enumerate(self.variables, start=1) if expr is not None ] primitive_defs = [ prim.to_gerber(unit) for prim in self.primitives ] return '*\n'.join(comments + variable_defs + primitive_defs) def to_graphic_primitives(self, offset, rotation, parameters : [float], unit=None, polarity_dark=True): variables = {i: v for i, v in enumerate(self.variables, start=1) if v is not None} for number, value in enumerate(parameters, start=1): if number in variables: raise SyntaxError(f'Re-definition of aperture macro variable {number} through parameter {value}') variables[number] = value for primitive in self.primitives: yield from primitive.to_graphic_primitives(offset, rotation, variables, unit, polarity_dark) def rotated(self, angle): # aperture macro primitives use degree counter-clockwise, our API uses radians clockwise return replace(self, primitives=tuple( replace(primitive, rotation=primitive.rotation - rad_to_deg(angle)) for primitive in self.primitives)) def scaled(self, scale): return replace(self, primitives=tuple( primitive.scaled(scale) for primitive in self.primitives)) var = VariableExpression deg_per_rad = 180 / math.pi class GenericMacros: _generic_hole = lambda n: (ap.Circle('mm', 0, var(n), 0, 0),) # NOTE: All generic macros have rotation values specified in **clockwise radians** like the rest of the user-facing # API. circle = ApertureMacro('GNC', ( ap.Circle('mm', 1, var(1), 0, 0, var(4) * -deg_per_rad), *_generic_hole(2))) rect = ApertureMacro('GNR', ( ap.CenterLine('mm', 1, var(1), var(2), 0, 0, var(5) * -deg_per_rad), *_generic_hole(3))) # params: width, height, corner radius, *hole, rotation rounded_rect = ApertureMacro('GRR', ( ap.CenterLine('mm', 1, var(1)-2*var(3), var(2), 0, 0, var(6) * -deg_per_rad), ap.CenterLine('mm', 1, var(1), var(2)-2*var(3), 0, 0, var(6) * -deg_per_rad), ap.Circle('mm', 1, var(3)*2, +(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad), ap.Circle('mm', 1, var(3)*2, +(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad), ap.Circle('mm', 1, var(3)*2, -(var(1)/2-var(3)), +(var(2)/2-var(3)), var(6) * -deg_per_rad), ap.Circle('mm', 1, var(3)*2, -(var(1)/2-var(3)), -(var(2)/2-var(3)), var(6) * -deg_per_rad), *_generic_hole(4))) # params: width, height, length difference between narrow side (top) and wide side (bottom), *hole, rotation isosceles_trapezoid = ApertureMacro('GTR', ( ap.Outline('mm', 1, 4, (var(1)/-2, var(2)/-2, var(1)/-2+var(3)/2, var(2)/2, var(1)/2-var(3)/2, var(2)/2, var(1)/2, var(2)/-2, var(1)/-2, var(2)/-2,), var(6) * -deg_per_rad), *_generic_hole(4))) # params: width, height, length difference between narrow side (top) and wide side (bottom), margin, *hole, rotation rounded_isosceles_trapezoid = ApertureMacro('GRTR', ( ap.Outline('mm', 1, 4, (var(1)/-2, var(2)/-2, var(1)/-2+var(3)/2, var(2)/2, var(1)/2-var(3)/2, var(2)/2, var(1)/2, var(2)/-2, var(1)/-2, var(2)/-2,), var(6) * -deg_per_rad), ap.VectorLine('mm', 1, var(4)*2, var(1)/-2, var(2)/-2, var(1)/-2+var(3)/2, var(2)/2,), ap.VectorLine('mm', 1, var(4)*2, var(1)/-2+var(3)/2, var(2)/2, var(1)/2-var(3)/2, var(2)/2,), ap.VectorLine('mm', 1, var(4)*2, var(1)/2-var(3)/2, var(2)/2, var(1)/2, var(2)/-2,), ap.VectorLine('mm', 1, var(4)*2, var(1)/2, var(2)/-2, var(1)/-2, var(2)/-2,), ap.Circle('mm', 1, var(4)*2, var(1)/-2, var(2)/-2,), ap.Circle('mm', 1, var(4)*2, var(1)/-2+var(3)/2, var(2)/2,), ap.Circle('mm', 1, var(4)*2, var(1)/2-var(3)/2, var(2)/2,), ap.Circle('mm', 1, var(4)*2, var(1)/2, var(2)/-2,), *_generic_hole(5))) # w must be larger than h # params: width, height, *hole, rotation obround = ApertureMacro('GNO', ( ap.CenterLine('mm', 1, var(1)-var(2), var(2), 0, 0, var(5) * -deg_per_rad), ap.Circle('mm', 1, var(2), +(var(1)-var(2))/2, 0, var(5) * -deg_per_rad), ap.Circle('mm', 1, var(2), -(var(1)-var(2))/2, 0, var(5) * -deg_per_rad), *_generic_hole(3) )) polygon = ApertureMacro('GNP', ( ap.Polygon('mm', 1, var(2), 0, 0, var(1), var(3) * -deg_per_rad), ap.Circle('mm', 0, var(4), 0, 0))) if __name__ == '__main__': import sys #for line in sys.stdin: #expr = _parse_expression(line.strip()) #print(expr, '->', expr.optimized()) for primitive in parse_macro(sys.stdin.read(), 'mm'): print(primitive)