#! /usr/bin/env python # -*- coding: utf-8 -*- # copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be> # Modified from parser.py by Paulo Henrique Silva <ph.silva@gmail.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module provides an RS-274-X class and parser. """ import copy import json import os import re import sys try: from cStringIO import StringIO except(ImportError): from io import StringIO from .gerber_statements import * from .primitives import * from .cam import CamFile, FileSettings from .utils import sq_distance def read(filename): """ Read data from filename and return a GerberFile Parameters ---------- filename : string Filename of file to parse Returns ------- file : :class:`gerber.rs274x.GerberFile` A GerberFile created from the specified file. """ return GerberParser().parse(filename) def loads(data, filename=None): """ Generate a GerberFile object from rs274x data in memory Parameters ---------- data : string string containing gerber file contents filename : string, optional string containing the filename of the data source Returns ------- file : :class:`gerber.rs274x.GerberFile` A GerberFile created from the specified file. """ return GerberParser().parse_raw(data, filename) class GerberFile(CamFile): """ A class representing a single gerber file The GerberFile class represents a single gerber file. Parameters ---------- statements : list list of gerber file statements settings : dict Dictionary of gerber file settings filename : string Filename of the source gerber file Attributes ---------- comments: list of strings List of comments contained in the gerber file. size : tuple, (<float>, <float>) Size in [self.units] of the layer described by the gerber file. bounds: tuple, ((<float>, <float>), (<float>, <float>)) boundaries of the layer described by the gerber file. `bounds` is stored as ((min x, max x), (min y, max y)) """ def __init__(self, statements, settings, primitives, apertures, filename=None): super(GerberFile, self).__init__(statements, settings, primitives, filename) self.apertures = apertures @property def comments(self): return [comment.comment for comment in self.statements if isinstance(comment, CommentStmt)] @property def size(self): xbounds, ybounds = self.bounds return (xbounds[1] - xbounds[0], ybounds[1] - ybounds[0]) @property def bounds(self): min_x = min_y = 1000000 max_x = max_y = -1000000 for stmt in [stmt for stmt in self.statements if isinstance(stmt, CoordStmt)]: if stmt.x is not None: min_x = min(stmt.x, min_x) max_x = max(stmt.x, max_x) if stmt.y is not None: min_y = min(stmt.y, min_y) max_y = max(stmt.y, max_y) return ((min_x, max_x), (min_y, max_y)) @property def bounding_box(self): min_x = min_y = 1000000 max_x = max_y = -1000000 for prim in self.primitives: bounds = prim.bounding_box min_x = min(bounds[0][0], min_x) max_x = max(bounds[0][1], max_x) min_y = min(bounds[1][0], min_y) max_y = max(bounds[1][1], max_y) return ((min_x, max_x), (min_y, max_y)) def write(self, filename, settings=None): """ Write data out to a gerber file. """ with open(filename, 'w') as f: for statement in self.statements: f.write(statement.to_gerber(settings or self.settings)) f.write("\n") def to_inch(self): if self.units != 'inch': self.units = 'inch' for statement in self.statements: statement.to_inch() for primitive in self.primitives: primitive.to_inch() def to_metric(self): if self.units != 'metric': self.units = 'metric' for statement in self.statements: statement.to_metric() for primitive in self.primitives: primitive.to_metric() def offset(self, x_offset=0, y_offset=0): for statement in self.statements: statement.offset(x_offset, y_offset) for primitive in self.primitives: primitive.offset(x_offset, y_offset) class GerberParser(object): """ GerberParser """ NUMBER = r"[\+-]?\d+" DECIMAL = r"[\+-]?\d+([.]?\d+)?" STRING = r"[a-zA-Z0-9_+\-/!?<>”’(){}.\|&@# :]+" NAME = r"[a-zA-Z_$\.][a-zA-Z_$\.0-9+\-]+" FS = r"(?P<param>FS)(?P<zero>(L|T|D))?(?P<notation>(A|I))[NG0-9]*X(?P<x>[0-7][0-7])Y(?P<y>[0-7][0-7])[DM0-9]*" MO = r"(?P<param>MO)(?P<mo>(MM|IN))" LP = r"(?P<param>LP)(?P<lp>(D|C))" AD_CIRCLE = r"(?P<param>AD)D(?P<d>\d+)(?P<shape>C)[,]?(?P<modifiers>[^,%]*)" AD_RECT = r"(?P<param>AD)D(?P<d>\d+)(?P<shape>R)[,](?P<modifiers>[^,%]*)" AD_OBROUND = r"(?P<param>AD)D(?P<d>\d+)(?P<shape>O)[,](?P<modifiers>[^,%]*)" AD_POLY = r"(?P<param>AD)D(?P<d>\d+)(?P<shape>P)[,](?P<modifiers>[^,%]*)" AD_MACRO = r"(?P<param>AD)D(?P<d>\d+)(?P<shape>{name})[,]?(?P<modifiers>[^,%]*)".format(name=NAME) AM = r"(?P<param>AM)(?P<name>{name})\*(?P<macro>[^%]*)".format(name=NAME) # Include File IF = r"(?P<param>IF)(?P<filename>.*)" # begin deprecated AS = r"(?P<param>AS)(?P<mode>(AXBY)|(AYBX))" IN = r"(?P<param>IN)(?P<name>.*)" IP = r"(?P<param>IP)(?P<ip>(POS|NEG))" IR = r"(?P<param>IR)(?P<angle>{number})".format(number=NUMBER) MI = r"(?P<param>MI)(A(?P<a>0|1))?(B(?P<b>0|1))?" OF = r"(?P<param>OF)(A(?P<a>{decimal}))?(B(?P<b>{decimal}))?".format(decimal=DECIMAL) SF = r"(?P<param>SF)(?P<discarded>.*)" LN = r"(?P<param>LN)(?P<name>.*)" DEPRECATED_UNIT = re.compile(r'(?P<mode>G7[01])\*') DEPRECATED_FORMAT = re.compile(r'(?P<format>G9[01])\*') # end deprecated PARAMS = (FS, MO, LP, AD_CIRCLE, AD_RECT, AD_OBROUND, AD_POLY, AD_MACRO, AM, AS, IF, IN, IP, IR, MI, OF, SF, LN) PARAM_STMT = [re.compile(r"%?{0}\*%?".format(p)) for p in PARAMS] COORD_FUNCTION = r"G0?[123]" COORD_OP = r"D0?[123]" COORD_STMT = re.compile(( r"(?P<function>{function})?" r"(X(?P<x>{number}))?(Y(?P<y>{number}))?" r"(I(?P<i>{number}))?(J(?P<j>{number}))?" r"(?P<op>{op})?\*".format(number=NUMBER, function=COORD_FUNCTION, op=COORD_OP))) APERTURE_STMT = re.compile(r"(?P<deprecated>(G54)|(G55))?D(?P<d>\d+)\*") COMMENT_STMT = re.compile(r"G0?4(?P<comment>[^*]*)(\*)?") EOF_STMT = re.compile(r"(?P<eof>M[0]?[012])\*") REGION_MODE_STMT = re.compile(r'(?P<mode>G3[67])\*') QUAD_MODE_STMT = re.compile(r'(?P<mode>G7[45])\*') # Keep include loop from crashing us INCLUDE_FILE_RECURSION_LIMIT = 10 def __init__(self): self.filename = None self.settings = FileSettings() self.statements = [] self.primitives = [] self.apertures = {} self.macros = {} self.current_region = None self.x = 0 self.y = 0 self.op = "D02" self.aperture = 0 self.interpolation = 'linear' self.direction = 'clockwise' self.image_polarity = 'positive' self.level_polarity = 'dark' self.region_mode = 'off' self.quadrant_mode = 'multi-quadrant' self.step_and_repeat = (1, 1, 0, 0) self._recursion_depth = 0 def parse(self, filename): self.filename = filename with open(filename, "rU") as fp: data = fp.read() return self.parse_raw(data, filename) def parse_raw(self, data, filename=None): self.filename = filename for stmt in self._parse(self._split_commands(data)): self.evaluate(stmt) self.statements.append(stmt) # Initialize statement units for stmt in self.statements: stmt.units = self.settings.units return GerberFile(self.statements, self.settings, self.primitives, self.apertures.values(), filename) def _split_commands(self, data): """ Split the data into commands. Commands end with * (and also newline to help with some badly formatted files) """ length = len(data) start = 0 in_header = True for cur in range(0, length): val = data[cur] if val == '%' and start == cur: in_header = True continue if val == '\r' or val == '\n': if start != cur: yield data[start:cur] start = cur + 1 elif not in_header and val == '*': yield data[start:cur + 1] start = cur + 1 elif in_header and val == '%': yield data[start:cur + 1] start = cur + 1 in_header = False def dump_json(self): stmts = {"statements": [stmt.__dict__ for stmt in self.statements]} return json.dumps(stmts) def dump_str(self): string = "" for stmt in self.statements: string += str(stmt) + "\n" return string def _parse(self, data): oldline = '' for line in data: line = oldline + line.strip() # skip empty lines if not len(line): continue # deal with multi-line parameters if line.startswith("%") and not line.endswith("%") and not "%" in line[1:]: oldline = line continue did_something = True # make sure we do at least one loop while did_something and len(line) > 0: did_something = False # consume empty data blocks if line[0] == '*': line = line[1:] did_something = True continue # coord (coord, r) = _match_one(self.COORD_STMT, line) if coord: yield CoordStmt.from_dict(coord, self.settings) line = r did_something = True continue # aperture selection (aperture, r) = _match_one(self.APERTURE_STMT, line) if aperture: yield ApertureStmt(**aperture) did_something = True line = r continue # parameter (param, r) = _match_one_from_many(self.PARAM_STMT, line) if param: if param["param"] == "FS": stmt = FSParamStmt.from_dict(param) self.settings.zero_suppression = stmt.zero_suppression self.settings.format = stmt.format self.settings.notation = stmt.notation yield stmt elif param["param"] == "MO": stmt = MOParamStmt.from_dict(param) self.settings.units = stmt.mode yield stmt elif param["param"] == "LP": yield LPParamStmt.from_dict(param) elif param["param"] == "AD": yield ADParamStmt.from_dict(param) elif param["param"] == "AM": stmt = AMParamStmt.from_dict(param) stmt.units = self.settings.units yield stmt elif param["param"] == "OF": yield OFParamStmt.from_dict(param) elif param["param"] == "IF": # Don't crash on include loop if self._recursion_depth < self.INCLUDE_FILE_RECURSION_LIMIT: self._recursion_depth += 1 with open(os.path.join(os.path.dirname(self.filename), param["filename"]), 'r') as f: inc_data = f.read() for stmt in self._parse(self._split_commands(inc_data)): yield stmt self._recursion_depth -= 1 else: raise IOError("Include file nesting depth limit exceeded.") elif param["param"] == "IN": yield INParamStmt.from_dict(param) elif param["param"] == "LN": yield LNParamStmt.from_dict(param) # deprecated commands AS, IN, IP, IR, MI, OF, SF, LN elif param["param"] == "AS": yield ASParamStmt.from_dict(param) elif param["param"] == "IN": yield INParamStmt.from_dict(param) elif param["param"] == "IP": yield IPParamStmt.from_dict(param) elif param["param"] == "IR": yield IRParamStmt.from_dict(param) elif param["param"] == "MI": yield MIParamStmt.from_dict(param) elif param["param"] == "OF": yield OFParamStmt.from_dict(param) elif param["param"] == "SF": yield SFParamStmt.from_dict(param) elif param["param"] == "LN": yield LNParamStmt.from_dict(param) else: yield UnknownStmt(line) did_something = True line = r continue # Region Mode (mode, r) = _match_one(self.REGION_MODE_STMT, line) if mode: yield RegionModeStmt.from_gerber(line) line = r did_something = True continue # Quadrant Mode (mode, r) = _match_one(self.QUAD_MODE_STMT, line) if mode: yield QuadrantModeStmt.from_gerber(line) line = r did_something = True continue # comment (comment, r) = _match_one(self.COMMENT_STMT, line) if comment: yield CommentStmt(comment["comment"]) did_something = True line = r continue # deprecated codes (deprecated_unit, r) = _match_one(self.DEPRECATED_UNIT, line) if deprecated_unit: stmt = MOParamStmt(param="MO", mo="inch" if "G70" in deprecated_unit["mode"] else "metric") self.settings.units = stmt.mode yield stmt line = r did_something = True continue (deprecated_format, r) = _match_one(self.DEPRECATED_FORMAT, line) if deprecated_format: yield DeprecatedStmt.from_gerber(line) line = r did_something = True continue # eof (eof, r) = _match_one(self.EOF_STMT, line) if eof: yield EofStmt() did_something = True line = r continue if line.find('*') > 0: yield UnknownStmt(line) did_something = True line = "" continue oldline = line def evaluate(self, stmt): """ Evaluate Gerber statement and update image accordingly. This method is called once for each statement in the file as it is parsed. Parameters ---------- statement : Statement Gerber/Excellon statement to evaluate. """ if isinstance(stmt, CoordStmt): self._evaluate_coord(stmt) elif isinstance(stmt, ParamStmt): self._evaluate_param(stmt) elif isinstance(stmt, ApertureStmt): self._evaluate_aperture(stmt) elif isinstance(stmt, (RegionModeStmt, QuadrantModeStmt)): self._evaluate_mode(stmt) elif isinstance(stmt, (CommentStmt, UnknownStmt, DeprecatedStmt, EofStmt)): return else: raise Exception("Invalid statement to evaluate") def _define_aperture(self, d, shape, modifiers): aperture = None if shape == 'C': diameter = modifiers[0][0] hole_diameter = 0 rectangular_hole = (0, 0) if len(modifiers[0]) == 2: hole_diameter = modifiers[0][1] elif len(modifiers[0]) == 3: rectangular_hole = modifiers[0][1:3] aperture = Circle(position=None, diameter=diameter, hole_diameter=hole_diameter, hole_width=rectangular_hole[0], hole_height=rectangular_hole[1], units=self.settings.units) elif shape == 'R': width = modifiers[0][0] height = modifiers[0][1] hole_diameter = 0 rectangular_hole = (0, 0) if len(modifiers[0]) == 3: hole_diameter = modifiers[0][2] elif len(modifiers[0]) == 4: rectangular_hole = modifiers[0][2:4] aperture = Rectangle(position=None, width=width, height=height, hole_diameter=hole_diameter, hole_width=rectangular_hole[0], hole_height=rectangular_hole[1], units=self.settings.units) elif shape == 'O': width = modifiers[0][0] height = modifiers[0][1] hole_diameter = 0 rectangular_hole = (0, 0) if len(modifiers[0]) == 3: hole_diameter = modifiers[0][2] elif len(modifiers[0]) == 4: rectangular_hole = modifiers[0][2:4] aperture = Obround(position=None, width=width, height=height, hole_diameter=hole_diameter, hole_width=rectangular_hole[0], hole_height=rectangular_hole[1], units=self.settings.units) elif shape == 'P': outer_diameter = modifiers[0][0] number_vertices = int(modifiers[0][1]) if len(modifiers[0]) > 2: rotation = modifiers[0][2] else: rotation = 0 hole_diameter = 0 rectangular_hole = (0, 0) if len(modifiers[0]) == 4: hole_diameter = modifiers[0][3] elif len(modifiers[0]) >= 5: rectangular_hole = modifiers[0][3:5] aperture = Polygon(position=None, sides=number_vertices, radius=outer_diameter/2.0, hole_diameter=hole_diameter, hole_width=rectangular_hole[0], hole_height=rectangular_hole[1], rotation=rotation) else: aperture = self.macros[shape].build(modifiers) aperture.units = self.settings.units self.apertures[d] = aperture def _evaluate_mode(self, stmt): if stmt.type == 'RegionMode': if self.region_mode == 'on' and stmt.mode == 'off': # Sometimes we have regions that have no points. Skip those if self.current_region: self.primitives.append(Region(self.current_region, level_polarity=self.level_polarity, units=self.settings.units)) self.current_region = None self.region_mode = stmt.mode elif stmt.type == 'QuadrantMode': self.quadrant_mode = stmt.mode def _evaluate_param(self, stmt): if stmt.param == "FS": self.settings.zero_suppression = stmt.zero_suppression self.settings.format = stmt.format self.settings.notation = stmt.notation elif stmt.param == "MO": self.settings.units = stmt.mode elif stmt.param == "IP": self.image_polarity = stmt.ip elif stmt.param == "LP": self.level_polarity = stmt.lp elif stmt.param == "AM": self.macros[stmt.name] = stmt elif stmt.param == "AD": self._define_aperture(stmt.d, stmt.shape, stmt.modifiers) def _evaluate_coord(self, stmt): x = self.x if stmt.x is None else stmt.x y = self.y if stmt.y is None else stmt.y if stmt.function in ("G01", "G1"): self.interpolation = 'linear' elif stmt.function in ('G02', 'G2', 'G03', 'G3'): self.interpolation = 'arc' self.direction = ('clockwise' if stmt.function in ('G02', 'G2') else 'counterclockwise') if stmt.only_function: # Sometimes we get a coordinate statement # that only sets the function. If so, don't # try futher otherwise that might draw/flash something return if stmt.op: self.op = stmt.op else: # no implicit op allowed, force here if coord block doesn't have it stmt.op = self.op if self.op == "D01" or self.op == "D1": start = (self.x, self.y) end = (x, y) if self.interpolation == 'linear': if self.region_mode == 'off': self.primitives.append(Line(start, end, self.apertures[self.aperture], level_polarity=self.level_polarity, units=self.settings.units)) else: # from gerber spec revision J3, Section 4.5, page 55: # The segments are not graphics objects in themselves; segments are part of region which is the graphics object. The segments have no thickness. # The current aperture is associated with the region. # This has no graphical effect, but allows all its attributes to # be applied to the region. if self.current_region is None: self.current_region = [Line(start, end, self.apertures.get(self.aperture, Circle((0, 0), 0)), level_polarity=self.level_polarity, units=self.settings.units), ] else: self.current_region.append(Line(start, end, self.apertures.get(self.aperture, Circle((0, 0), 0)), level_polarity=self.level_polarity, units=self.settings.units)) else: i = 0 if stmt.i is None else stmt.i j = 0 if stmt.j is None else stmt.j center = self._find_center(start, end, (i, j)) if self.region_mode == 'off': self.primitives.append(Arc(start, end, center, self.direction, self.apertures[self.aperture], quadrant_mode=self.quadrant_mode, level_polarity=self.level_polarity, units=self.settings.units)) else: if self.current_region is None: self.current_region = [Arc(start, end, center, self.direction, self.apertures.get(self.aperture, Circle((0,0), 0)), quadrant_mode=self.quadrant_mode, level_polarity=self.level_polarity, units=self.settings.units),] else: self.current_region.append(Arc(start, end, center, self.direction, self.apertures.get(self.aperture, Circle((0,0), 0)), quadrant_mode=self.quadrant_mode, level_polarity=self.level_polarity, units=self.settings.units)) # Gerbv seems to reset interpolation mode in regions.. # TODO: Make sure this is right. self.interpolation = 'linear' elif self.op == "D02" or self.op == "D2": if self.region_mode == "on": # D02 in the middle of a region finishes that region and starts a new one if self.current_region and len(self.current_region) > 1: self.primitives.append(Region(self.current_region, level_polarity=self.level_polarity, units=self.settings.units)) self.current_region = None elif self.op == "D03" or self.op == "D3": primitive = copy.deepcopy(self.apertures[self.aperture]) if primitive is not None: if not isinstance(primitive, AMParamStmt): primitive.position = (x, y) primitive.level_polarity = self.level_polarity primitive.units = self.settings.units self.primitives.append(primitive) else: # Aperture Macro for am_prim in primitive.primitives: renderable = am_prim.to_primitive((x, y), self.level_polarity, self.settings.units) if renderable is not None: self.primitives.append(renderable) self.x, self.y = x, y def _find_center(self, start, end, offsets): """ In single quadrant mode, the offsets are always positive, which means there are 4 possible centers. The correct center is the only one that results in an arc with sweep angle of less than or equal to 90 degrees in the specified direction """ two_pi = 2 * math.pi if self.quadrant_mode == 'single-quadrant': # The Gerber spec says single quadrant only has one possible center, # and you can detect it based on the angle. But for real files, this # seems to work better - there is usually only one option that makes # sense for the center (since the distance should be the same # from start and end). We select the center with the least error in # radius from all the options with a valid sweep angle. sqdist_diff_min = sys.maxint center = None for factors in [(1, 1), (1, -1), (-1, 1), (-1, -1)]: test_center = (start[0] + offsets[0] * factors[0], start[1] + offsets[1] * factors[1]) # Find angle from center to start and end points start_angle = math.atan2(*reversed([_start - _center for _start, _center in zip(start, test_center)])) end_angle = math.atan2(*reversed([_end - _center for _end, _center in zip(end, test_center)])) # Clamp angles to 0, 2pi theta0 = (start_angle + two_pi) % two_pi theta1 = (end_angle + two_pi) % two_pi # Determine sweep angle in the current arc direction if self.direction == 'counterclockwise': sweep_angle = abs(theta1 - theta0) else: theta0 += two_pi sweep_angle = abs(theta0 - theta1) % two_pi # Calculate the radius error sqdist_start = sq_distance(start, test_center) sqdist_end = sq_distance(end, test_center) # Take the option with the lowest radius error from the set of # options with a valid sweep angle if ((abs(sqdist_start - sqdist_end) < sqdist_diff_min) and (sweep_angle >= 0) and (sweep_angle <= math.pi / 2.0)): center = test_center sqdist_diff_min = abs(sqdist_start - sqdist_end) return center else: return (start[0] + offsets[0], start[1] + offsets[1]) def _evaluate_aperture(self, stmt): self.aperture = stmt.d def _match_one(expr, data): match = expr.match(data) if match is None: return ({}, None) else: return (match.groupdict(), data[match.end(0):]) def _match_one_from_many(exprs, data): for expr in exprs: match = expr.match(data) if match: return (match.groupdict(), data[match.end(0):]) return ({}, None)