#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2014 Hamilton Kibbe # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cairocffi as cairo from operator import mul import math import tempfile from .render import GerberContext from ..primitives import * try: from cStringIO import StringIO except(ImportError): from io import StringIO class GerberCairoContext(GerberContext): def __init__(self, scale=300): GerberContext.__init__(self) self.scale = (scale, scale) self.surface = None self.ctx = None self.bg = False self.mask = None self.mask_ctx = None self.origin_in_pixels = None self.size_in_pixels = None def set_bounds(self, bounds): origin_in_inch = (bounds[0][0], bounds[1][0]) size_in_inch = (abs(bounds[0][1] - bounds[0][0]), abs(bounds[1][1] - bounds[1][0])) size_in_pixels = map(mul, size_in_inch, self.scale) self.origin_in_pixels = tuple(map(mul, origin_in_inch, self.scale)) if self.origin_in_pixels is None else self.origin_in_pixels self.size_in_pixels = size_in_pixels if self.size_in_pixels is None else self.size_in_pixels if self.surface is None: self.surface_buffer = tempfile.NamedTemporaryFile() self.surface = cairo.SVGSurface(self.surface_buffer, size_in_pixels[0], size_in_pixels[1]) self.ctx = cairo.Context(self.surface) self.ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD) self.ctx.scale(1, -1) self.ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1]) self.mask = cairo.SVGSurface(None, size_in_pixels[0], size_in_pixels[1]) self.mask_ctx = cairo.Context(self.mask) self.mask_ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD) self.mask_ctx.scale(1, -1) self.mask_ctx.translate(-(origin_in_inch[0] * self.scale[0]), (-origin_in_inch[1]*self.scale[0]) - size_in_pixels[1]) def _render_line(self, line, color): start = map(mul, line.start, self.scale) end = map(mul, line.end, self.scale) if not self.invert: ctx = self.ctx ctx.set_source_rgba(*color, alpha=self.alpha) ctx.set_operator(cairo.OPERATOR_OVER if line.level_polarity == "dark" else cairo.OPERATOR_CLEAR) else: ctx = self.mask_ctx ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) ctx.set_operator(cairo.OPERATOR_CLEAR) if isinstance(line.aperture, Circle): width = line.aperture.diameter ctx.set_line_width(width * self.scale[0]) ctx.set_line_cap(cairo.LINE_CAP_ROUND) ctx.move_to(*start) ctx.line_to(*end) ctx.stroke() elif isinstance(line.aperture, Rectangle): points = [tuple(map(mul, x, self.scale)) for x in line.vertices] ctx.set_line_width(0) ctx.move_to(*points[0]) for point in points[1:]: ctx.line_to(*point) ctx.fill() def _render_arc(self, arc, color): center = map(mul, arc.center, self.scale) start = map(mul, arc.start, self.scale) end = map(mul, arc.end, self.scale) radius = self.scale[0] * arc.radius angle1 = arc.start_angle angle2 = arc.end_angle width = arc.aperture.diameter if arc.aperture.diameter != 0 else 0.001 if not self.invert: ctx = self.ctx ctx.set_source_rgba(*color, alpha=self.alpha) ctx.set_operator(cairo.OPERATOR_OVER if arc.level_polarity == "dark" else cairo.OPERATOR_CLEAR) else: ctx = self.mask_ctx ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) ctx.set_operator(cairo.OPERATOR_CLEAR) ctx.set_line_width(width * self.scale[0]) ctx.set_line_cap(cairo.LINE_CAP_ROUND) ctx.move_to(*start) # You actually have to do this... if arc.direction == 'counterclockwise': ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2) else: ctx.arc_negative(*center, radius=radius, angle1=angle1, angle2=angle2) ctx.move_to(*end) # ...lame def _render_region(self, region, color): if not self.invert: ctx = self.ctx ctx.set_source_rgba(*color, alpha=self.alpha) ctx.set_operator(cairo.OPERATOR_OVER if region.level_polarity == "dark" else cairo.OPERATOR_CLEAR) else: ctx = self.mask_ctx ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) ctx.set_operator(cairo.OPERATOR_CLEAR) ctx.set_line_width(0) ctx.set_line_cap(cairo.LINE_CAP_ROUND) ctx.move_to(*tuple(map(mul, region.primitives[0].start, self.scale))) for p in region.primitives: if isinstance(p, Line): ctx.line_to(*tuple(map(mul, p.end, self.scale))) else: center = map(mul, p.center, self.scale) start = map(mul, p.start, self.scale) end = map(mul, p.end, self.scale) radius = self.scale[0] * p.radius angle1 = p.start_angle angle2 = p.end_angle if p.direction == 'counterclockwise': ctx.arc(*center, radius=radius, angle1=angle1, angle2=angle2) else: ctx.arc_negative(*center, radius=radius, angle1=angle1, angle2=angle2) ctx.fill() def _render_circle(self, circle, color): center = tuple(map(mul, circle.position, self.scale)) if not self.invert: ctx = self.ctx ctx.set_source_rgba(*color, alpha=self.alpha) ctx.set_operator(cairo.OPERATOR_OVER if circle.level_polarity == "dark" else cairo.OPERATOR_CLEAR) else: ctx = self.mask_ctx ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) ctx.set_operator(cairo.OPERATOR_CLEAR) ctx.set_line_width(0) ctx.arc(*center, radius=circle.radius * self.scale[0], angle1=0, angle2=2 * math.pi) ctx.fill() def _render_rectangle(self, rectangle, color): ll = map(mul, rectangle.lower_left, self.scale) width, height = tuple(map(mul, (rectangle.width, rectangle.height), map(abs, self.scale))) if not self.invert: ctx = self.ctx ctx.set_source_rgba(*color, alpha=self.alpha) ctx.set_operator(cairo.OPERATOR_OVER if rectangle.level_polarity == "dark" else cairo.OPERATOR_CLEAR) else: ctx = self.mask_ctx ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) ctx.set_operator(cairo.OPERATOR_CLEAR) ctx.set_line_width(0) ctx.rectangle(*ll, width=width, height=height) ctx.fill() def _render_obround(self, obround, color): self._render_circle(obround.subshapes['circle1'], color) self._render_circle(obround.subshapes['circle2'], color) self._render_rectangle(obround.subshapes['rectangle'], color) def _render_drill(self, circle, color): self._render_circle(circle, color) def _render_test_record(self, primitive, color): self.ctx.select_font_face('monospace', cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL) self.ctx.set_font_size(200) self._render_circle(Circle(primitive.position, 0.01), color) self.ctx.set_source_rgb(*color) self.ctx.set_operator(cairo.OPERATOR_OVER if primitive.level_polarity == "dark" else cairo.OPERATOR_CLEAR) self.ctx.move_to(*[self.scale[0] * (coord + 0.01) for coord in primitive.position]) self.ctx.scale(1, -1) self.ctx.show_text(primitive.net_name) self.ctx.scale(1, -1) def _clear_mask(self): self.mask_ctx.set_operator(cairo.OPERATOR_OVER) self.mask_ctx.set_source_rgba(*self.color, alpha=self.alpha) self.mask_ctx.paint() def _render_mask(self): self.ctx.set_operator(cairo.OPERATOR_OVER) ptn = cairo.SurfacePattern(self.mask) ptn.set_matrix(cairo.Matrix(xx=1.0, yy=-1.0, x0=-self.origin_in_pixels[0], y0=self.size_in_pixels[1] + self.origin_in_pixels[1])) self.ctx.set_source(ptn) self.ctx.paint() def _paint_background(self): if not self.bg: self.bg = True self.ctx.set_source_rgba(*self.background_color) self.ctx.paint() def dump(self, filename): is_svg = filename.lower().endswith(".svg") if is_svg: self.surface.finish() self.surface_buffer.flush() with open(filename, "w") as f: self.surface_buffer.seek(0) f.write(self.surface_buffer.read()) f.flush() else: self.surface.write_to_png(filename) def dump_str(self): """ Return a string containing the rendered image. """ fobj = StringIO() self.surface.write_to_png(fobj) return fobj.getvalue() def dump_svg_str(self): """ Return a string containg the rendered SVG. """ self.surface.finish() self.surface_buffer.flush() return self.surface_buffer.read()