#!/usr/bin/env python3 from pathlib import Path import multiprocessing import re import tempfile import subprocess import fnmatch import shutil import numpy as np from pyelmer import elmer import click from scipy import constants def enumerate_mesh_bodies(msh_file): with open(msh_file, 'r') as f: for line in f: if line.startswith('$PhysicalNames'): break else: raise ValueError('No physcial bodies found in mesh file.') _num_names = next(f) for line in f: if line.startswith('$EndPhysicalNames'): break dim, _, line = line.strip().partition(' ') tag, _, name = line.partition(' ') yield name.strip().strip('"'), (int(dim), int(tag)) INPUT_EXT_MAP = { '.grd': 1, '.mesh*': 2, '.ep': 3, '.ansys': 4, '.inp': 5, '.fil': 6, '.FDNEUT': 7, '.unv': 8, '.mphtxt': 9, '.dat': 10, '.node': 11, '.ele': 11, '.mesh': 12, '.msh': 14, '.ep.i': 15, '.2dm': 16} OUTPUT_EXT_MAP = { '.grd': 1, '.mesh*': 2, '.ep': 3, '.msh': 4, '.vtu': 5} def elmer_grid(infile, outfile=None, intype=None, outtype=None, cwd=None, **kwargs): infile = Path(infile) if outfile is not None: outfile = Path(outfile) if intype is None: intype = str(INPUT_EXT_MAP[infile.suffix]) if outtype is None: if outfile is not None and outfile.suffix: outtype = str(OUTPUT_EXT_MAP[outfile.suffix]) else: outtype = '2' if outfile is not None: kwargs['out'] = str(outfile) args = ['ElmerGrid', intype, outtype, str(infile)] for key, value in kwargs.items(): args.append(f'-{key}') if isinstance(value, (tuple, list)): args.extend(str(v) for v in value) else: args.append(str(value)) subprocess.run(args, cwd=cwd, check=True) def elmer_solver(cwd): subprocess.run(['ElmerSolver'], cwd=cwd) @click.command() @click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path)) @click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path)) def run_capacitance_simulation(mesh_file, sim_dir): physical = dict(enumerate_mesh_bodies(mesh_file)) if sim_dir is not None: sim_dir = Path(sim_dir) sim_dir.mkdir(exist_ok=True) sim = elmer.load_simulation('3D_steady', 'coil_parasitics_sim.yml') mesh_dir = '.' mesh_fn = 'mesh' sim.header['Mesh DB'] = f'"{mesh_dir}" "{mesh_fn}"' sim.constants.update({ 'Permittivity of Vacuum': str(constants.epsilon_0), 'Gravity(4)': f'0 -1 0 {constants.g}', 'Boltzmann Constant': str(constants.Boltzmann), 'Unit Charge': str(constants.elementary_charge)}) air = elmer.load_material('air', sim, 'coil_parasitics_materials.yml') ro4003c = elmer.load_material('ro4003c', sim, 'coil_parasitics_materials.yml') solver_electrostatic = elmer.load_solver('Electrostatics_Capacitance', sim, 'coil_parasitics_solvers.yml') solver_electrostatic.data['Potential Difference'] = '1.0' eqn = elmer.Equation(sim, 'main', [solver_electrostatic]) bdy_sub = elmer.Body(sim, 'substrate', [physical['substrate'][1]]) bdy_sub.material = ro4003c bdy_sub.equation = eqn bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]]) bdy_ab.material = air bdy_ab.equation = eqn # boundaries for name, identity in physical.items(): if (m := re.fullmatch(r'trace([0-9]+)', name)): num = int(m.group(1)) bndry_m2 = elmer.Boundary(sim, name, [identity[1]]) bndry_m2.data['Capacitance Body'] = str(num) boundary_airbox = elmer.Boundary(sim, 'FarField', [physical['airbox_surface'][1]]) boundary_airbox.data['Electric Infinity BC'] = 'True' with tempfile.TemporaryDirectory() as tmpdir: if sim_dir: tmpdir = str(sim_dir) sim.write_startinfo(tmpdir) sim.write_sif(tmpdir) # Convert mesh from gmsh to elemer formats. Also scale it from 1 unit = 1 mm to 1 unit = 1 m (SI units) elmer_grid(mesh_file.absolute(), 'mesh', cwd=tmpdir, scale=[1e-3, 1e-3, 1e-3]) elmer_solver(tmpdir) capacitance_matrix = np.loadtxt(tmpdir / 'capacitance.txt') @click.command() @click.option('-d', '--sim-dir', type=click.Path(dir_okay=True, file_okay=False, path_type=Path)) @click.argument('mesh_file', type=click.Path(dir_okay=False, path_type=Path)) def run_inductance_simulation(mesh_file, sim_dir): physical = dict(enumerate_mesh_bodies(mesh_file)) if sim_dir is not None: sim_dir = Path(sim_dir) sim_dir.mkdir(exist_ok=True) sim = elmer.load_simulation('3D_steady', 'coil_mag_sim.yml') mesh_dir = '.' mesh_fn = 'mesh' sim.header['Mesh DB'] = f'"{mesh_dir}" "{mesh_fn}"' sim.constants.update({ 'Permittivity of Vacuum': str(constants.epsilon_0), 'Gravity(4)': f'0 -1 0 {constants.g}', 'Boltzmann Constant': str(constants.Boltzmann), 'Unit Charge': str(constants.elementary_charge)}) air = elmer.load_material('air', sim, 'coil_mag_materials.yml') ro4003c = elmer.load_material('ro4003c', sim, 'coil_mag_materials.yml') copper = elmer.load_material('copper', sim, 'coil_mag_materials.yml') solver_current = elmer.load_solver('Static_Current_Conduction', sim, 'coil_mag_solvers.yml') solver_magdyn = elmer.load_solver('Magneto_Dynamics', sim, 'coil_mag_solvers.yml') solver_magdyn_calc = elmer.load_solver('Magneto_Dynamics_Calculations', sim, 'coil_mag_solvers.yml') copper_eqn = elmer.Equation(sim, 'copperEqn', [solver_current, solver_magdyn, solver_magdyn_calc]) air_eqn = elmer.Equation(sim, 'airEqn', [solver_magdyn, solver_magdyn_calc]) bdy_trace = elmer.Body(sim, 'trace', [physical['trace'][1]]) bdy_trace.material = copper bdy_trace.equation = copper_eqn bdy_sub = elmer.Body(sim, 'substrate', [physical['substrate'][1]]) bdy_sub.material = ro4003c bdy_sub.equation = air_eqn bdy_ab = elmer.Body(sim, 'airbox', [physical['airbox'][1]]) bdy_ab.material = air bdy_ab.equation = air_eqn bdy_if_top = elmer.Body(sim, 'interface_top', [physical['interface_top'][1]]) bdy_if_top.material = copper bdy_if_top.equation = copper_eqn bdy_if_bottom = elmer.Body(sim, 'interface_bottom', [physical['interface_bottom'][1]]) bdy_if_bottom.material = copper bdy_if_bottom.equation = copper_eqn # boundaries boundary_airbox = elmer.Boundary(sim, 'FarField', [physical['airbox_surface'][1]]) boundary_airbox.data['Electric Infinity BC'] = 'True' boundary_vplus = elmer.Boundary(sim, 'Vplus', [physical['interface_top'][1]]) boundary_vplus.data['Potential'] = 1.0 boundary_vplus.data['Save Scalars'] = True boundary_vminus = elmer.Boundary(sim, 'Vminus', [physical['interface_bottom'][1]]) boundary_vminus.data['Potential'] = 0.0 with tempfile.TemporaryDirectory() as tmpdir: if sim_dir: tmpdir = str(sim_dir) sim.write_startinfo(tmpdir) sim.write_sif(tmpdir) # Convert mesh from gmsh to elemer formats. Also scale it from 1 unit = 1 mm to 1 unit = 1 m (SI units) elmer_grid(mesh_file.absolute(), 'mesh', cwd=tmpdir, scale=[1e-3, 1e-3, 1e-3]) elmer_solver(tmpdir) if __name__ == '__main__': run_inductance_simulation()