From 3fb26e6940b5ae752308d8a33f2608d266795153 Mon Sep 17 00:00:00 2001 From: jaseg Date: Wed, 29 Dec 2021 19:58:20 +0100 Subject: Basic round-trip works --- gerbonara/gerber/primitives.py | 932 ----------------------------------------- 1 file changed, 932 deletions(-) delete mode 100644 gerbonara/gerber/primitives.py (limited to 'gerbonara/gerber/primitives.py') diff --git a/gerbonara/gerber/primitives.py b/gerbonara/gerber/primitives.py deleted file mode 100644 index d505ddb..0000000 --- a/gerbonara/gerber/primitives.py +++ /dev/null @@ -1,932 +0,0 @@ -#! /usr/bin/env python -# -*- coding: utf-8 -*- - -# copyright 2016 Hamilton Kibbe - -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at - -# http://www.apache.org/licenses/LICENSE-2.0 - -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -import math -from operator import add -from itertools import combinations -from .utils import validate_coordinates, inch, metric, convex_hull -from .utils import rotate_point, nearly_equal - - - -class Primitive: - def __init__(self, polarity_dark=True, rotation=0, **meta): - self.polarity_dark = polarity_dark - self.meta = meta - self.rotation = rotation - - def __eq__(self, other): - return self.__dict__ == other.__dict__ - - def aperture(self): - return None - - -class Line(Primitive): - def __init__(self, start, end, aperture=None, polarity_dark=True, rotation=0, **meta): - super().__init__(polarity_dark, rotation, **meta) - self.start = start - self.end = end - self.aperture = aperture - - @property - def angle(self): - delta_x, delta_y = tuple(end - start for end, start in zip(self.end, self.start)) - return math.atan2(delta_y, delta_x) - - @property - def bounding_box(self): - if isinstance(self.aperture, Circle): - width_2 = self.aperture.radius - height_2 = width_2 - else: - width_2 = self.aperture.width / 2. - height_2 = self.aperture.height / 2. - min_x = min(self.start[0], self.end[0]) - width_2 - max_x = max(self.start[0], self.end[0]) + width_2 - min_y = min(self.start[1], self.end[1]) - height_2 - max_y = max(self.start[1], self.end[1]) + height_2 - return (min_x, min_y), (max_x, max_y) - - @property - def bounding_box_no_aperture(self): - '''Gets the bounding box without the aperture''' - min_x = min(self.start[0], self.end[0]) - max_x = max(self.start[0], self.end[0]) - min_y = min(self.start[1], self.end[1]) - max_y = max(self.start[1], self.end[1]) - return ((min_x, min_y), (max_x, max_y)) - - @property - def vertices(self): - if self._vertices is None: - start = self.start - end = self.end - if isinstance(self.aperture, Rectangle): - width = self.aperture.width - height = self.aperture.height - - # Find all the corners of the start and end position - start_ll = (start[0] - (width / 2.), start[1] - (height / 2.)) - start_lr = (start[0] + (width / 2.), start[1] - (height / 2.)) - start_ul = (start[0] - (width / 2.), start[1] + (height / 2.)) - start_ur = (start[0] + (width / 2.), start[1] + (height / 2.)) - end_ll = (end[0] - (width / 2.), end[1] - (height / 2.)) - end_lr = (end[0] + (width / 2.), end[1] - (height / 2.)) - end_ul = (end[0] - (width / 2.), end[1] + (height / 2.)) - end_ur = (end[0] + (width / 2.), end[1] + (height / 2.)) - - # The line is defined by the convex hull of the points - self._vertices = convex_hull((start_ll, start_lr, start_ul, start_ur, end_ll, end_lr, end_ul, end_ur)) - elif isinstance(self.aperture, Polygon): - points = [map(add, point, vertex) - for vertex in self.aperture.vertices - for point in (start, end)] - self._vertices = convex_hull(points) - return self._vertices - - def offset(self, x_offset=0, y_offset=0): - self._changed() - self.start = tuple([coord + offset for coord, offset - in zip(self.start, (x_offset, y_offset))]) - self.end = tuple([coord + offset for coord, offset - in zip(self.end, (x_offset, y_offset))]) - - def equivalent(self, other, offset): - - if not isinstance(other, Line): - return False - - equiv_start = tuple(map(add, other.start, offset)) - equiv_end = tuple(map(add, other.end, offset)) - - - return nearly_equal(self.start, equiv_start) and nearly_equal(self.end, equiv_end) - - def __str__(self): - return "".format(self.start, self.end) - - def __repr__(self): - return str(self) - -class Arc(Primitive): - def __init__(self, start, end, center, direction, aperture, level_polarity=None, **kwargs): - super(Arc, self).__init__(**kwargs) - self.level_polarity = level_polarity - self._start = start - self._end = end - self._center = center - self.direction = direction - self.aperture = aperture - self._to_convert = ['start', 'end', 'center', 'aperture'] - - @property - def flashed(self): - return False - - @property - def start(self): - return self._start - - @start.setter - def start(self, value): - self._changed() - self._start = value - - @property - def end(self): - return self._end - - @end.setter - def end(self, value): - self._changed() - self._end = value - - @property - def center(self): - return self._center - - @center.setter - def center(self, value): - self._changed() - self._center = value - - @property - def radius(self): - dy, dx = tuple([start - center for start, center - in zip(self.start, self.center)]) - return math.sqrt(dy ** 2 + dx ** 2) - - @property - def start_angle(self): - dx, dy = tuple([start - center for start, center - in zip(self.start, self.center)]) - return math.atan2(dy, dx) - - @property - def end_angle(self): - dx, dy = tuple([end - center for end, center - in zip(self.end, self.center)]) - return math.atan2(dy, dx) - - @property - def sweep_angle(self): - two_pi = 2 * math.pi - theta0 = (self.start_angle + two_pi) % two_pi - theta1 = (self.end_angle + two_pi) % two_pi - if self.direction == 'counterclockwise': - return abs(theta1 - theta0) - else: - theta0 += two_pi - return abs(theta0 - theta1) % two_pi - - @property - def bounding_box(self): - if self._bounding_box is None: - two_pi = 2 * math.pi - theta0 = (self.start_angle + two_pi) % two_pi - theta1 = (self.end_angle + two_pi) % two_pi - points = [self.start, self.end] - x, y = zip(*points) - if hasattr(self.aperture, 'radius'): - min_x = min(x) - self.aperture.radius - max_x = max(x) + self.aperture.radius - min_y = min(y) - self.aperture.radius - max_y = max(y) + self.aperture.radius - else: - min_x = min(x) - self.aperture.width - max_x = max(x) + self.aperture.width - min_y = min(y) - self.aperture.height - max_y = max(y) + self.aperture.height - - self._bounding_box = ((min_x, min_y), (max_x, max_y)) - return self._bounding_box - - @property - def bounding_box_no_aperture(self): - '''Gets the bounding box without considering the aperture''' - two_pi = 2 * math.pi - theta0 = (self.start_angle + two_pi) % two_pi - theta1 = (self.end_angle + two_pi) % two_pi - points = [self.start, self.end] - x, y = zip(*points) - - min_x = min(x) - max_x = max(x) - min_y = min(y) - max_y = max(y) - return ((min_x, min_y), (max_x, max_y)) - - def offset(self, x_offset=0, y_offset=0): - self._changed() - self.start = tuple(map(add, self.start, (x_offset, y_offset))) - self.end = tuple(map(add, self.end, (x_offset, y_offset))) - self.center = tuple(map(add, self.center, (x_offset, y_offset))) - - -class Circle(Primitive): - def __init__(self, position, diameter, polarity_dark=True): - super(Circle, self).__init__(**kwargs) - validate_coordinates(position) - self._position = position - self._diameter = diameter - self.hole_diameter = hole_diameter - self.hole_width = hole_width - self.hole_height = hole_height - self._to_convert = ['position', 'diameter', 'hole_diameter', 'hole_width', 'hole_height'] - - @property - def flashed(self): - return True - - @property - def position(self): - return self._position - - @position.setter - def position(self, value): - self._changed() - self._position = value - - @property - def diameter(self): - return self._diameter - - @diameter.setter - def diameter(self, value): - self._changed() - self._diameter = value - - @property - def radius(self): - return self.diameter / 2. - - @property - def hole_radius(self): - if self.hole_diameter != None: - return self.hole_diameter / 2. - return None - - @property - def bounding_box(self): - if self._bounding_box is None: - min_x = self.position[0] - self.radius - max_x = self.position[0] + self.radius - min_y = self.position[1] - self.radius - max_y = self.position[1] + self.radius - self._bounding_box = ((min_x, min_y), (max_x, max_y)) - return self._bounding_box - - def offset(self, x_offset=0, y_offset=0): - self.position = tuple(map(add, self.position, (x_offset, y_offset))) - - def equivalent(self, other, offset): - '''Is this the same as the other circle, ignoring the offiset?''' - - if not isinstance(other, Circle): - return False - - if self.diameter != other.diameter or self.hole_diameter != other.hole_diameter: - return False - - equiv_position = tuple(map(add, other.position, offset)) - - return nearly_equal(self.position, equiv_position) - - -class Rectangle(Primitive): - """ - When rotated, the rotation is about the center point. - - Only aperture macro generated Rectangle objects can be rotated. If you aren't in a AMGroup, - then you don't need to worry about rotation - """ - - def __init__(self, position, width, height, hole_diameter=0, - hole_width=0, hole_height=0, **kwargs): - super(Rectangle, self).__init__(**kwargs) - validate_coordinates(position) - self._position = position - self._width = width - self._height = height - self.hole_diameter = hole_diameter - self.hole_width = hole_width - self.hole_height = hole_height - self._to_convert = ['position', 'width', 'height', 'hole_diameter', - 'hole_width', 'hole_height'] - # TODO These are probably wrong when rotated - self._lower_left = None - self._upper_right = None - - @property - def flashed(self): - return True - - @property - def position(self): - return self._position - - @position.setter - def position(self, value): - self._changed() - self._position = value - - @property - def width(self): - return self._width - - @width.setter - def width(self, value): - self._changed() - self._width = value - - @property - def height(self): - return self._height - - @height.setter - def height(self, value): - self._changed() - self._height = value - - @property - def hole_radius(self): - """The radius of the hole. If there is no hole, returns None""" - if self.hole_diameter != None: - return self.hole_diameter / 2. - return None - - @property - def upper_right(self): - return (self.position[0] + (self.axis_aligned_width / 2.), - self.position[1] + (self.axis_aligned_height / 2.)) - - @property - def lower_left(self): - return (self.position[0] - (self.axis_aligned_width / 2.), - self.position[1] - (self.axis_aligned_height / 2.)) - - @property - def bounding_box(self): - if self._bounding_box is None: - ll = (self.position[0] - (self.axis_aligned_width / 2.), - self.position[1] - (self.axis_aligned_height / 2.)) - ur = (self.position[0] + (self.axis_aligned_width / 2.), - self.position[1] + (self.axis_aligned_height / 2.)) - self._bounding_box = ((ll[0], ll[1]), (ur[0], ur[1])) - return self._bounding_box - - @property - def vertices(self): - if self._vertices is None: - delta_w = self.width / 2. - delta_h = self.height / 2. - ll = ((self.position[0] - delta_w), (self.position[1] - delta_h)) - ul = ((self.position[0] - delta_w), (self.position[1] + delta_h)) - ur = ((self.position[0] + delta_w), (self.position[1] + delta_h)) - lr = ((self.position[0] + delta_w), (self.position[1] - delta_h)) - self._vertices = [((x * self._cos_theta - y * self._sin_theta), - (x * self._sin_theta + y * self._cos_theta)) - for x, y in [ll, ul, ur, lr]] - return self._vertices - - @property - def axis_aligned_width(self): - return (self._cos_theta * self.width + self._sin_theta * self.height) - - @property - def axis_aligned_height(self): - return (self._cos_theta * self.height + self._sin_theta * self.width) - - def equivalent(self, other, offset): - """Is this the same as the other rect, ignoring the offset?""" - - if not isinstance(other, Rectangle): - return False - - if self.width != other.width or self.height != other.height or self.rotation != other.rotation or self.hole_diameter != other.hole_diameter: - return False - - equiv_position = tuple(map(add, other.position, offset)) - - return nearly_equal(self.position, equiv_position) - - def __str__(self): - return "".format(self.width, self.height, self.rotation * 180/math.pi) - - def __repr__(self): - return self.__str__() - - -class Obround(Primitive): - def __init__(self, position, width, height, hole_diameter=0, - hole_width=0,hole_height=0, **kwargs): - super(Obround, self).__init__(**kwargs) - validate_coordinates(position) - self._position = position - self._width = width - self._height = height - self.hole_diameter = hole_diameter - self.hole_width = hole_width - self.hole_height = hole_height - self._to_convert = ['position', 'width', 'height', 'hole_diameter', - 'hole_width', 'hole_height' ] - - @property - def flashed(self): - return True - - @property - def position(self): - return self._position - - @position.setter - def position(self, value): - self._changed() - self._position = value - - @property - def width(self): - return self._width - - @width.setter - def width(self, value): - self._changed() - self._width = value - - @property - def height(self): - return self._height - - @height.setter - def height(self, value): - self._changed() - self._height = value - - @property - def hole_radius(self): - """The radius of the hole. If there is no hole, returns None""" - if self.hole_diameter != None: - return self.hole_diameter / 2. - - return None - - @property - def orientation(self): - return 'vertical' if self.height > self.width else 'horizontal' - - @property - def bounding_box(self): - if self._bounding_box is None: - ll = (self.position[0] - (self.axis_aligned_width / 2.), - self.position[1] - (self.axis_aligned_height / 2.)) - ur = (self.position[0] + (self.axis_aligned_width / 2.), - self.position[1] + (self.axis_aligned_height / 2.)) - self._bounding_box = ((ll[0], ll[1]), (ur[0], ur[1])) - return self._bounding_box - - @property - def subshapes(self): - if self.orientation == 'vertical': - circle1 = Circle((self.position[0], self.position[1] + - (self.height - self.width) / 2.), self.width) - circle2 = Circle((self.position[0], self.position[1] - - (self.height - self.width) / 2.), self.width) - rect = Rectangle(self.position, self.width, - (self.height - self.width)) - else: - circle1 = Circle((self.position[0] - - (self.height - self.width) / 2., - self.position[1]), self.height) - circle2 = Circle((self.position[0] - + (self.height - self.width) / 2., - self.position[1]), self.height) - rect = Rectangle(self.position, (self.width - self.height), - self.height) - return {'circle1': circle1, 'circle2': circle2, 'rectangle': rect} - - @property - def axis_aligned_width(self): - return (self._cos_theta * self.width + - self._sin_theta * self.height) - - @property - def axis_aligned_height(self): - return (self._cos_theta * self.height + - self._sin_theta * self.width) - - -class Polygon(Primitive): - """ - Polygon flash defined by a set number of sides. - """ - def __init__(self, position, sides, radius, hole_diameter=0, - hole_width=0, hole_height=0, **kwargs): - super(Polygon, self).__init__(**kwargs) - validate_coordinates(position) - self._position = position - self.sides = sides - self._radius = radius - self.hole_diameter = hole_diameter - self.hole_width = hole_width - self.hole_height = hole_height - self._to_convert = ['position', 'radius', 'hole_diameter', - 'hole_width', 'hole_height'] - - @property - def flashed(self): - return True - - @property - def diameter(self): - return self.radius * 2 - - @property - def hole_radius(self): - if self.hole_diameter != None: - return self.hole_diameter / 2. - return None - - @property - def position(self): - return self._position - - @position.setter - def position(self, value): - self._changed() - self._position = value - - @property - def radius(self): - return self._radius - - @radius.setter - def radius(self, value): - self._changed() - self._radius = value - - @property - def bounding_box(self): - if self._bounding_box is None: - min_x = self.position[0] - self.radius - max_x = self.position[0] + self.radius - min_y = self.position[1] - self.radius - max_y = self.position[1] + self.radius - self._bounding_box = ((min_x, min_y), (max_x, max_y)) - return self._bounding_box - - def offset(self, x_offset=0, y_offset=0): - self.position = tuple(map(add, self.position, (x_offset, y_offset))) - - @property - def vertices(self): - - offset = self.rotation - delta_angle = 360.0 / self.sides - - points = [] - for i in range(self.sides): - points.append( - rotate_point((self.position[0] + self.radius, self.position[1]), offset + delta_angle * i, self.position)) - return points - - - def equivalent(self, other, offset): - """ - Is this the outline the same as the other, ignoring the position offset? - """ - - # Quick check if it even makes sense to compare them - if type(self) != type(other) or self.sides != other.sides or self.radius != other.radius: - return False - - equiv_pos = tuple(map(add, other.position, offset)) - - return nearly_equal(self.position, equiv_pos) - - -class AMGroup(Primitive): - """ - """ - def __init__(self, amprimitives, stmt = None, **kwargs): - """ - - stmt : The original statment that generated this, since it is really hard to re-generate from primitives - """ - super(AMGroup, self).__init__(**kwargs) - - self.primitives = [] - for amprim in amprimitives: - prim = amprim.to_primitive(self.units) - if isinstance(prim, list): - for p in prim: - self.primitives.append(p) - elif prim: - self.primitives.append(prim) - self._position = None - self._to_convert = ['_position', 'primitives'] - self.stmt = stmt - - def to_inch(self): - if self.units == 'metric': - super(AMGroup, self).to_inch() - - # If we also have a stmt, convert that too - if self.stmt: - self.stmt.to_inch() - - - def to_metric(self): - if self.units == 'inch': - super(AMGroup, self).to_metric() - - # If we also have a stmt, convert that too - if self.stmt: - self.stmt.to_metric() - - @property - def flashed(self): - return True - - @property - def bounding_box(self): - # TODO Make this cached like other items - xlims, ylims = zip(*[p.bounding_box for p in self.primitives]) - minx, maxx = zip(*xlims) - miny, maxy = zip(*ylims) - min_x = min(minx) - max_x = max(maxx) - min_y = min(miny) - max_y = max(maxy) - return ((min_x, max_x), (min_y, max_y)) - - @property - def position(self): - return self._position - - def offset(self, x_offset=0, y_offset=0): - self._position = tuple(map(add, self._position, (x_offset, y_offset))) - - for primitive in self.primitives: - primitive.offset(x_offset, y_offset) - - @position.setter - def position(self, new_pos): - ''' - Sets the position of the AMGroup. - This offset all of the objects by the specified distance. - ''' - - if self._position: - dx = new_pos[0] - self._position[0] - dy = new_pos[1] - self._position[1] - else: - dx = new_pos[0] - dy = new_pos[1] - - for primitive in self.primitives: - primitive.offset(dx, dy) - - self._position = new_pos - - def equivalent(self, other, offset): - ''' - Is this the macro group the same as the other, ignoring the position offset? - ''' - - if len(self.primitives) != len(other.primitives): - return False - - # We know they have the same number of primitives, so now check them all - for i in range(0, len(self.primitives)): - if not self.primitives[i].equivalent(other.primitives[i], offset): - return False - - # If we didn't find any differences, then they are the same - return True - -class Outline(Primitive): - """ - Outlines only exist as the rendering for a apeture macro outline. - They don't exist outside of AMGroup objects - """ - - def __init__(self, primitives, **kwargs): - super(Outline, self).__init__(**kwargs) - self.primitives = primitives - self._to_convert = ['primitives'] - - if self.primitives[0].start != self.primitives[-1].end: - raise ValueError('Outline must be closed') - - @property - def flashed(self): - return True - - @property - def bounding_box(self): - if self._bounding_box is None: - xlims, ylims = zip(*[p.bounding_box for p in self.primitives]) - minx, maxx = zip(*xlims) - miny, maxy = zip(*ylims) - min_x = min(minx) - max_x = max(maxx) - min_y = min(miny) - max_y = max(maxy) - self._bounding_box = ((min_x, max_x), (min_y, max_y)) - return self._bounding_box - - def offset(self, x_offset=0, y_offset=0): - self._changed() - for p in self.primitives: - p.offset(x_offset, y_offset) - - @property - def vertices(self): - if self._vertices is None: - theta = math.radians(360/self.sides) - vertices = [(self.position[0] + (math.cos(theta * side) * self.radius), - self.position[1] + (math.sin(theta * side) * self.radius)) - for side in range(self.sides)] - self._vertices = [(((x * self._cos_theta) - (y * self._sin_theta)), - ((x * self._sin_theta) + (y * self._cos_theta))) - for x, y in vertices] - return self._vertices - - @property - def width(self): - bounding_box = self.bounding_box() - return bounding_box[1][0] - bounding_box[0][0] - - def equivalent(self, other, offset): - ''' - Is this the outline the same as the other, ignoring the position offset? - ''' - - # Quick check if it even makes sense to compare them - if type(self) != type(other) or len(self.primitives) != len(other.primitives): - return False - - for i in range(0, len(self.primitives)): - if not self.primitives[i].equivalent(other.primitives[i], offset): - return False - - return True - -class Region(Primitive): - """ - """ - - def __init__(self, primitives, **kwargs): - super(Region, self).__init__(**kwargs) - self.primitives = primitives - self._to_convert = ['primitives'] - - @property - def flashed(self): - return False - - @property - def bounding_box(self): - if self._bounding_box is None: - xlims, ylims = zip(*[p.bounding_box for p in self.primitives]) - minx, maxx = zip(*xlims) - miny, maxy = zip(*ylims) - min_x = min(minx) - max_x = max(maxx) - min_y = min(miny) - max_y = max(maxy) - self._bounding_box = ((min_x, min_y), (max_x, max_y)) - return self._bounding_box - - def offset(self, x_offset=0, y_offset=0): - self._changed() - for p in self.primitives: - p.offset(x_offset, y_offset) - - -class Drill(Primitive): - """ A drill hole - """ - def __init__(self, position, diameter, **kwargs): - super(Drill, self).__init__('dark', **kwargs) - validate_coordinates(position) - self._position = position - self._diameter = diameter - self._to_convert = ['position', 'diameter'] - - @property - def flashed(self): - return False - - @property - def position(self): - return self._position - - @position.setter - def position(self, value): - self._changed() - self._position = value - - @property - def diameter(self): - return self._diameter - - @diameter.setter - def diameter(self, value): - self._changed() - self._diameter = value - - @property - def radius(self): - return self.diameter / 2. - - @property - def bounding_box(self): - if self._bounding_box is None: - min_x = self.position[0] - self.radius - max_x = self.position[0] + self.radius - min_y = self.position[1] - self.radius - max_y = self.position[1] + self.radius - self._bounding_box = ((min_x, min_y), (max_x, max_y)) - return self._bounding_box - - def offset(self, x_offset=0, y_offset=0): - self._changed() - self.position = tuple(map(add, self.position, (x_offset, y_offset))) - - def __str__(self): - return '' % (self.diameter, self.units, self.position[0], self.position[1]) - - -class Slot(Primitive): - """ A drilled slot - """ - def __init__(self, start, end, diameter, **kwargs): - super(Slot, self).__init__('dark', **kwargs) - validate_coordinates(start) - validate_coordinates(end) - self.start = start - self.end = end - self.diameter = diameter - self._to_convert = ['start', 'end', 'diameter'] - - - @property - def flashed(self): - return False - - @property - def bounding_box(self): - if self._bounding_box is None: - radius = self.diameter / 2. - min_x = min(self.start[0], self.end[0]) - radius - max_x = max(self.start[0], self.end[0]) + radius - min_y = min(self.start[1], self.end[1]) - radius - max_y = max(self.start[1], self.end[1]) + radius - self._bounding_box = ((min_x, min_y), (max_x, max_y)) - return self._bounding_box - - def offset(self, x_offset=0, y_offset=0): - self.start = tuple(map(add, self.start, (x_offset, y_offset))) - self.end = tuple(map(add, self.end, (x_offset, y_offset))) - - -class TestRecord(Primitive): - """ Netlist Test record - """ - __test__ = False # This is not a PyTest unit test. - - def __init__(self, position, net_name, layer, **kwargs): - super(TestRecord, self).__init__(**kwargs) - validate_coordinates(position) - self.position = position - self.net_name = net_name - self.layer = layer - self._to_convert = ['position'] - -class RegionGroup: - def __init__(self): - self.outline = [] - - def __bool__(self): - return bool(self.outline) - - def append(self, primitive): - self.outline.append(primitive) - -- cgit