From 1d0336056f2b29a95148768bfc5e805afad27cba Mon Sep 17 00:00:00 2001 From: jaseg Date: Sat, 29 Jan 2022 21:08:55 +0100 Subject: Remove obsolete files --- gerbonara/gerber/panelize/composition.py | 192 ------ gerbonara/gerber/panelize/dxf.py | 796 ------------------------- gerbonara/gerber/panelize/dxf_path.py | 412 ------------- gerbonara/gerber/panelize/gerber_statements.py | 49 -- gerbonara/gerber/panelize/utility.py | 20 - 5 files changed, 1469 deletions(-) delete mode 100644 gerbonara/gerber/panelize/composition.py delete mode 100644 gerbonara/gerber/panelize/dxf.py delete mode 100644 gerbonara/gerber/panelize/dxf_path.py delete mode 100644 gerbonara/gerber/panelize/gerber_statements.py delete mode 100644 gerbonara/gerber/panelize/utility.py (limited to 'gerbonara/gerber/panelize') diff --git a/gerbonara/gerber/panelize/composition.py b/gerbonara/gerber/panelize/composition.py deleted file mode 100644 index a30f959..0000000 --- a/gerbonara/gerber/panelize/composition.py +++ /dev/null @@ -1,192 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -# Copyright 2019 Hiroshi Murayama -import os -from functools import reduce -from ..cam import FileSettings -from ..gerber_statements import EofStmt -from ..excellon_statements import * -from ..excellon import DrillSlot, DrillHit -from .. import rs274x -from . import excellon -# from . import dxf - -class Composition(object): - def __init__(self, settings = None, comments = None): - self.settings = settings - self.comments = comments if comments != None else [] - -class GerberComposition(Composition): - APERTURE_ID_BIAS = 10 - - def __init__(self, settings=None, comments=None): - super(GerberComposition, self).__init__(settings, comments) - self.aperture_macros = {} - self.apertures = [] - self.drawings = [] - - def merge(self, file): - if isinstance(file, rs274x.GerberFile): - self._merge_gerber(file) -# elif isinstance(file, dxf.DxfFile): -# self._merge_dxf(file) - else: - raise Exception('unsupported file type') - - def dump(self, path): - def statements(): - for k in self.aperture_macros: - yield self.aperture_macros[k] - for s in self.apertures: - yield s - for s in self.drawings: - yield s - yield EofStmt() - self.settings.notation = 'absolute' - self.settings.zeros = 'trailing' - with open(path, 'w') as f: - rs274x.write_gerber_header(f, self.settings) - for statement in statements(): - f.write(statement.to_gerber(self.settings) + '\n') - - def _merge_gerber(self, file): - aperture_macro_map = {} - aperture_map = {} - - if self.settings: - if self.settings.units == 'metric': - file.to_metric() - else: - file.to_inch() - - for macro in file.aperture_macros: - statement = file.aperture_macros[macro] - name = statement.name - newname = self._register_aperture_macro(statement) - aperture_macro_map[name] = newname - - for statement in file.aperture_defs: - if statement.param == 'AD': - if statement.shape in aperture_macro_map: - statement.shape = aperture_macro_map[statement.shape] - dnum = statement.d - newdnum = self._register_aperture(statement) - aperture_map[dnum] = newdnum - - for statement in file.main_statements: - if statement.type == 'APERTURE': - statement.d = aperture_map[statement.d] - self.drawings.append(statement) - - if not self.settings: - self.settings = file.context - - def _merge_dxf(self, file): - if self.settings: - if self.settings.units == 'metric': - file.to_metric() - else: - file.to_inch() - - file.dcode = self._register_aperture(file.aperture) - self.drawings.append(file.statements) - - if not self.settings: - self.settings = file.settings - - - def _register_aperture_macro(self, statement): - name = statement.name - newname = name - offset = 0 - while newname in self.aperture_macros: - offset += 1 - newname = '%s_%d' % (name, offset) - statement.name = newname - self.aperture_macros[newname] = statement - return newname - - def _register_aperture(self, statement): - statement.d = len(self.apertures) + self.APERTURE_ID_BIAS - self.apertures.append(statement) - return statement.d - -class DrillComposition(Composition): - def __init__(self, settings=None, comments=None): - super(DrillComposition, self).__init__(settings, comments) - self.tools = [] - self.hits = [] - self.dxf_statements = [] - - def merge(self, file): - if isinstance(file, excellon.ExcellonFileEx): - self._merge_excellon(file) - elif isinstance(file, DxfFile): - self._merge_dxf(file) - else: - raise Exception('unsupported file type') - - def dump(self, path): - def statements(): - for t in self.tools: - yield ToolSelectionStmt(t.number).to_excellon(self.settings) - for h in self.hits: - if h.tool.number == t.number: - yield h.to_excellon(self.settings) - for num, statement in self.dxf_statements: - if num == t.number: - yield statement.to_excellon(self.settings) - yield EndOfProgramStmt().to_excellon() - - self.settings.notation = 'absolute' - self.settings.zeros = 'trailing' - with open(path, 'w') as f: - excellon.write_excellon_header(f, self.settings, self.tools) - for statement in statements(): - f.write(statement + '\n') - - def _merge_excellon(self, file): - tool_map = {} - - if not self.settings: - self.settings = file.settings - else: - if self.settings.units == 'metric': - file.to_metric() - else: - file.to_inch() - - for tool in iter(file.tools.values()): - num = tool.number - tool_map[num] = self._register_tool(tool) - - for hit in file.hits: - hit.tool = tool_map[hit.tool.number] - self.hits.append(hit) - - def _merge_dxf(self, file): - if not self.settings: - self.settings = file.settings - else: - if self.settings.units == 'metric': - file.to_metric() - else: - file.to_inch() - - tool = self._register_tool(ExcellonTool(self.settings, number=1, diameter=file.width)) - self.dxf_statements.append((tool.number, file.statements)) - - def _register_tool(self, tool): - for existing in self.tools: - if existing.equivalent(tool): - return existing - new_tool = ExcellonTool.from_tool(tool) - new_tool.settings = self.settings - def toolnums(): - for tool in self.tools: - yield tool.number - max_num = reduce(lambda x, y: x if x > y else y, toolnums(), 0) - new_tool.number = max_num + 1 - self.tools.append(new_tool) - return new_tool diff --git a/gerbonara/gerber/panelize/dxf.py b/gerbonara/gerber/panelize/dxf.py deleted file mode 100644 index 9eb9217..0000000 --- a/gerbonara/gerber/panelize/dxf.py +++ /dev/null @@ -1,796 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -# Copyright 2019 Hiroshi Murayama - -import io, sys -from math import pi, cos, sin, tan, atan, atan2, acos, asin, sqrt -import dxfgrabber -from ..cam import CamFile, FileSettings -from ..utils import inch, metric, write_gerber_value, rotate_point -from ..gerber_statements import ADParamStmt -from ..excellon_statements import ExcellonTool -from ..excellon_statements import CoordinateStmt -from .utility import is_equal_point, is_equal_value -from .dxf_path import generate_paths, judge_containment -from .excellon import write_excellon_header -from .rs274x import write_gerber_header - -ACCEPTABLE_ERROR = 0.001 - -def _normalize_angle(start_angle, end_angle): - angle = end_angle - start_angle - if angle > 0: - start = start_angle % 360 - else: - angle = -angle - start = end_angle % 360 - angle = min(angle, 360) - start = start - 360 if start > 180 else start - - regions = [] - while angle > 0: - end = start + angle - if end <= 180: - regions.append((start * pi / 180, end * pi / 180)) - angle = 0 - else: - regions.append((start * pi / 180, pi)) - angle = end - 180 - start = -180 - return regions - -def _intersections_of_line_and_circle(start, end, center, radius, error_range): - x1 = start[0] - center[0] - y1 = start[1] - center[1] - x2 = end[0] - center[0] - y2 = end[1] - center[1] - - dx = x2 - x1 - dy = y2 - y1 - dr = sqrt(dx * dx + dy * dy) - D = x1 * y2 - x2 * y1 - - distance = abs(dy * x1 - dx * y1) / dr - - D2 = D * D - dr2 = dr * dr - r2 = radius * radius - delta = r2 * dr2 - D2 - if distance > radius - error_range and distance < radius + error_range: - delta = 0 - if delta < 0: - return None - - sqrt_D = sqrt(delta) - E_x = -dx * sqrt_D if dy < 0 else dx * sqrt_D - E_y = abs(dy) * sqrt_D - - p1_x = (D * dy + E_x) / dr2 - p2_x = (D * dy - E_x) / dr2 - p1_y = (-D * dx + E_y) / dr2 - p2_y = (-D * dx - E_y) / dr2 - - p1_angle = atan2(p1_y, p1_x) - p2_angle = atan2(p2_y, p2_x) - if dx == 0: - p1_t = (p1_y - y1) / dy - p2_t = (p2_y - y1) / dy - else: - p1_t = (p1_x - x1) / dx - p2_t = (p2_x - x1) / dx - - if delta == 0: - return ( - (p1_x + center[0], p1_y + center[1]), - None, - p1_angle, None, - p1_t, None - ) - else: - return ( - (p1_x + center[0], p1_y + center[1]), - (p2_x + center[0], p2_y + center[1]), - p1_angle, p2_angle, - p1_t, p2_t - ) - -class DxfStatement(object): - def __init__(self, entity): - self.entity = entity - self.start = None - self.end = None - self.is_closed = False - - def to_inch(self): - pass - - def to_metric(self): - pass - - def is_equal_to(self, target, error_range=0): - return False - - def reverse(self): - raise Exception('Not implemented') - - def offset(self, offset_x, offset_y): - raise Exception('Not supported') - - def rotate(self, angle, center=(0, 0)): - raise Exception('Not supported') - - -class DxfLineStatement(DxfStatement): - @classmethod - def from_entity(cls, entity): - start = (entity.start[0], entity.start[1]) - end = (entity.end[0], entity.end[1]) - return cls(entity, start, end) - - @property - def bounding_box(self): - return (min(self.start[0], self.end[0]), - min(self.start[1], self.end[1]), - max(self.start[0], self.end[0]), - max(self.start[1], self.end[1])) - - def __init__(self, entity, start, end): - super(DxfLineStatement, self).__init__(entity) - self.start = start - self.end = end - - def to_inch(self): - self.start = ( - inch(self.start[0]), inch(self.start[1])) - self.end = ( - inch(self.end[0]), inch(self.end[1])) - - def to_metric(self): - self.start = ( - metric(self.start[0]), metric(self.start[1])) - self.end = ( - metric(self.end[0]), metric(self.end[1])) - - def is_equal_to(self, target, error_range=0): - if not isinstance(target, DxfLineStatement): - return False - return (is_equal_point(self.start, target.start, error_range) and \ - is_equal_point(self.end, target.end, error_range)) or \ - (is_equal_point(self.start, target.end, error_range) and \ - is_equal_point(self.end, target.start, error_range)) - - def reverse(self): - pt = self.start - self.start = self.end - self.end = pt - - def dots(self, pitch, width, offset=0): - x0, y0 = self.start - x1, y1 = self.end - y1 = self.end[1] - xp = x1 - x0 - yp = y1 - y0 - l = sqrt(xp * xp + yp * yp) - xd = xp * pitch / l - yd = yp * pitch / l - x0 += xp * offset / l - y0 += yp * offset / l - - if offset > l + width / 2: - return (None, offset - l) - else: - d = offset; - while d < l + width / 2: - yield ((x0, y0), d - l) - x0 += xd - y0 += yd - d += pitch - - def offset(self, offset_x, offset_y): - self.start = (self.start[0] + offset_x, self.start[1] + offset_y) - self.end = (self.end[0] + offset_x, self.end[1] + offset_y) - - def rotate(self, angle, center=(0, 0)): - self.start = rotate_point(self.start, angle, center) - self.end = rotate_point(self.end, angle, center) - - def intersections_with_halfline(self, point_from, point_to, error_range): - denominator = (self.end[0] - self.start[0]) * (point_to[1] - point_from[1]) - \ - (self.end[1] - self.start[1]) * (point_to[0] - point_from[0]) - de = error_range * error_range - if denominator >= -de and denominator <= de: - return [] - from_dx = point_from[0] - self.start[0] - from_dy = point_from[1] - self.start[1] - r = ((point_to[1] - point_from[1]) * from_dx - - (point_to[0] - point_from[0]) * from_dy) / denominator - s = ((self.end[1] - self.start[1]) * from_dx - - (self.end[0] - self.start[0]) * from_dy) / denominator - dx = (self.end[0] - self.start[0]) - dy = (self.end[1] - self.start[1]) - le = error_range / sqrt(dx * dx + dy * dy) - if s < 0 or r < -le or r > 1 + le: - return [] - - pt = (self.start[0] + (self.end[0] - self.start[0]) * r, - self.start[1] + (self.end[1] - self.start[1]) * r) - if is_equal_point(pt, self.start, error_range): - return [] - else: - return [pt] - - def intersections_with_arc(self, center, radius, angle_regions, error_range): - intersection = \ - _intersections_of_line_and_circle(self.start, self.end, center, radius, error_range) - if intersection is None: - return [] - else: - p1, p2, p1_angle, p2_angle, p1_t, p2_t = intersection - - pts = [] - if p1_t >= 0 and p1_t <= 1: - for region in angle_regions: - if p1_angle >= region[0] and p1_angle <= region[1]: - pts.append(p1) - break - if p2 is not None and p2_t >= 0 and p2_t <= 1: - for region in angle_regions: - if p2_angle >= region[0] and p2_angle <= region[1]: - pts.append(p2) - break - - return pts - -class DxfArcStatement(DxfStatement): - def __init__(self, entity): - super(DxfArcStatement, self).__init__(entity) - if entity.dxftype == 'CIRCLE': - self.radius = self.entity.radius - self.center = (self.entity.center[0], self.entity.center[1]) - self.start = (self.center[0] + self.radius, self.center[1]) - self.end = self.start - self.start_angle = 0 - self.end_angle = 360 - self.is_closed = True - elif entity.dxftype == 'ARC': - self.start_angle = self.entity.start_angle - self.end_angle = self.entity.end_angle - self.radius = self.entity.radius - self.center = (self.entity.center[0], self.entity.center[1]) - self.start = ( - self.center[0] + self.radius * cos(self.start_angle / 180. * pi), - self.center[1] + self.radius * sin(self.start_angle / 180. * pi), - ) - self.end = ( - self.center[0] + self.radius * cos(self.end_angle / 180. * pi), - self.center[1] + self.radius * sin(self.end_angle / 180. * pi), - ) - angle = self.end_angle - self.start_angle - self.is_closed = angle >= 360 or angle <= -360 - else: - raise Exception('invalid DXF type was specified') - self.angle_regions = _normalize_angle(self.start_angle, self.end_angle) - - @property - def bounding_box(self): - return (self.center[0] - self.radius, self.center[1] - self.radius, - self.center[0] + self.radius, self.center[1] + self.radius) - - def to_inch(self): - self.radius = inch(self.radius) - self.center = (inch(self.center[0]), inch(self.center[1])) - self.start = (inch(self.start[0]), inch(self.start[1])) - self.end = (inch(self.end[0]), inch(self.end[1])) - - def to_metric(self): - self.radius = metric(self.radius) - self.center = (metric(self.center[0]), metric(self.center[1])) - self.start = (metric(self.start[0]), metric(self.start[1])) - self.end = (metric(self.end[0]), metric(self.end[1])) - - def is_equal_to(self, target, error_range=0): - if not isinstance(target, DxfArcStatement): - return False - aerror_range = error_range / pi * self.radius * 180 - return is_equal_point(self.center, target.center, error_range) and \ - is_equal_value(self.radius, target.radius, error_range) and \ - ((is_equal_value(self.start_angle, target.start_angle, aerror_range) and - is_equal_value(self.end_angle, target.end_angle, aerror_range)) or - (is_equal_value(self.start_angle, target.end_angle, aerror_range) and - is_equal_value(self.end_angle, target.end_angle, aerror_range))) - - def reverse(self): - tmp = self.start_angle - self.start_angle = self.end_angle - self.end_angle = tmp - tmp = self.start - self.start = self.end - self.end = tmp - - def dots(self, pitch, width, offset=0): - angle = self.end_angle - self.start_angle - afactor = 1 if angle > 0 else -1 - aangle = angle * afactor - L = 2 * pi * self.radius - l = L * aangle / 360 - pangle = pitch / L * 360 - wangle = width / L * 360 - oangle = offset / L * 360 - - if offset > l + width / 2: - yield (None, offset - l) - else: - da = oangle - while da < aangle + wangle / 2: - cangle = self.start_angle + da * afactor - x = self.radius * cos(cangle / 180 * pi) + self.center[0] - y = self.radius * sin(cangle / 180 * pi) + self.center[1] - remain = (da - aangle) / 360 * L - yield((x, y), remain) - da += pangle - - def offset(self, offset_x, offset_y): - self.center = (self.center[0] + offset_x, self.center[1] + offset_y) - self.start = (self.start[0] + offset_x, self.start[1] + offset_y) - self.end = (self.end[0] + offset_x, self.end[1] + offset_y) - - def rotate(self, angle, center=(0, 0)): - self.start_angle += angle - self.end_angle += angle - self.center = rotate_point(self.center, angle, center) - self.start = rotate_point(self.start, angle, center) - self.end = rotate_point(self.end, angle, center) - self.angle_regions = _normalize_angle(self.start_angle, self.end_angle) - - def intersections_with_halfline(self, point_from, point_to, error_range): - intersection = \ - _intersections_of_line_and_circle( - point_from, point_to, self.center, self.radius, error_range) - if intersection is None: - return [] - else: - p1, p2, p1_angle, p2_angle, p1_t, p2_t = intersection - - if is_equal_point(p1, self.start, error_range): - p1 = None - elif p2 is not None and is_equal_point(p2, self.start, error_range): - p2 = None - - def is_contained(angle, region, error): - if angle >= region[0] - error and angle <= region[1] + error: - return True - if angle < 0 and region[1] > 0: - angle = angle + 2 * pi - elif angle > 0 and region[0] < 0: - angle = angle - 2 * pi - return angle >= region[0] - error and angle <= region[1] + error - - aerror = error_range * self.radius - pts = [] - if p1 is not None and p1_t >= 0 and not is_equal_point(p1, self.start, error_range): - for region in self.angle_regions: - if is_contained(p1_angle, region, aerror): - pts.append(p1) - break - if p2 is not None and p2_t >= 0 and not is_equal_point(p2, self.start, error_range): - for region in self.angle_regions: - if is_contained(p2_angle, region, aerror): - pts.append(p2) - break - - return pts - - def intersections_with_arc(self, center, radius, angle_regions, error_range): - x1 = center[0] - self.center[0] - y1 = center[1] - self.center[1] - r1 = self.radius - r2 = radius - cd_sq = x1 * x1 + y1 * y1 - cd = sqrt(cd_sq) - rd = abs(r1 - r2) - - if (cd >= 0 and cd <= rd) or cd >= r1 + r2: - return [] - - A = (cd_sq + r1 * r1 - r2 * r2) / 2 - scale = sqrt(cd_sq * r1 * r1 - A * A) / cd_sq - xl = A * x1 / cd_sq - xr = y1 * scale - yl = A * y1 / cd_sq - yr = x1 * scale - - pt1_x = xl + xr - pt1_y = yl - yr - pt2_x = xl - xr - pt2_y = yl + yr - pt1_angle1 = atan2(pt1_y, pt1_x) - pt1_angle2 = atan2(pt1_y - y1, pt1_x - x1) - pt2_angle1 = atan2(pt2_y, pt2_x) - pt2_angle2 = atan2(pt2_y - y1, pt2_x - x1) - - aerror = error_range * self.radius - pts=[] - for region in self.angle_regions: - if pt1_angle1 >= region[0] and pt1_angle1 <= region[1]: - for region in angle_regions: - if pt1_angle2 >= region[0] - aerror and pt1_angle2 <= region[1] + aerror: - pts.append((pt1_x + self.center[0], pt1_y + self.center[1])) - break - break - for region in self.angle_regions: - if pt2_angle1 >= region[0] and pt2_angle1 <= region[1]: - for region in angle_regions: - if pt2_angle2 >= region[0] - aerror and pt2_angle2 <= region[1] + aerror: - pts.append((pt2_x + self.center[0], pt2_y + self.center[1])) - break - break - return pts - -class DxfPolylineStatement(DxfStatement): - def __init__(self, entity): - super(DxfPolylineStatement, self).__init__(entity) - self.start = (self.entity.points[0][0], self.entity.points[0][1]) - self.is_closed = self.entity.is_closed - if self.is_closed: - self.end = self.start - else: - self.end = (self.entity.points[-1][0], self.entity.points[-1][1]) - - def disassemble(self): - class Item: - pass - - def ptseq(): - for i in range(1, len(self.entity.points)): - yield i - if self.entity.is_closed: - yield 0 - - x0 = self.entity.points[0][0] - y0 = self.entity.points[0][1] - b = self.entity.bulge[0] - for idx in ptseq(): - pt = self.entity.points[idx] - x1 = pt[0] - y1 = pt[1] - if b == 0: - item = Item() - item.dxftype = 'LINE' - item.start = (x0, y0) - item.end = (x1, y1) - item.is_closed = False - yield DxfLineStatement.from_entity(item) - else: - ang = 4 * atan(b) - xm = x0 + x1 - ym = y0 + y1 - t = 1 / tan(ang / 2) - xc = (xm - t * (y1 - y0)) / 2 - yc = (ym + t * (x1 - x0)) / 2 - r = sqrt((x0 - xc)*(x0 - xc) + (y0 - yc)*(y0 - yc)) - rx0 = x0 - xc - ry0 = y0 - yc - rc = max(min(rx0 / r, 1.0), -1.0) - start_angle = acos(rc) if ry0 > 0 else 2 * pi - acos(rc) - start_angle *= 180 / pi - end_angle = start_angle + ang * 180 / pi - - item = Item() - item.dxftype = 'ARC' - item.start = (x0, y0) - item.end = (x1, y1) - item.start_angle = start_angle - item.end_angle = end_angle - item.radius = r - item.center = (xc, yc) - item.is_closed = end_angle - start_angle >= 360 - yield DxfArcStatement(item) - - x0 = x1 - y0 = y1 - b = self.entity.bulge[idx] - - def to_inch(self): - self.start = (inch(self.start[0]), inch(self.start[1])) - self.end = (inch(self.end[0]), inch(self.end[1])) - for idx in range(0, len(self.entity.points)): - self.entity.points[idx] = ( - inch(self.entity.points[idx][0]), inch(self.entity.points[idx][1])) - - def to_metric(self): - self.start = (metric(self.start[0]), metric(self.start[1])) - self.end = (metric(self.end[0]), metric(self.end[1])) - for idx in range(0, len(self.entity.points)): - self.entity.points[idx] = ( - metric(self.entity.points[idx][0]), metric(self.entity.points[idx][1])) - - def offset(self, offset_x, offset_y): - for idx in range(len(self.entity.points)): - self.entity.points[idx] = ( - self.entity.points[idx][0] + offset_x, self.entity.points[idx][1] + offset_y) - - def rotate(self, angle, center=(0, 0)): - for idx in range(len(self.entity.points)): - self.entity.points[idx] = rotate_point(self.entity.points[idx], angle, center) - -class DxfStatements(object): - def __init__(self, statements, units, dcode=10, draw_mode=None, fill_mode=None): - if draw_mode is None: - draw_mode = DxfFile.DM_LINE - if fill_mode is None: - fill_mode = DxfFile.FM_TURN_OVER - self._units = units - self.dcode = dcode - self.draw_mode = draw_mode - self.fill_mode = fill_mode - self.pitch = inch(1) if self._units == 'inch' else 1 - self.width = 0 - self.error_range = inch(ACCEPTABLE_ERROR) if self._units == 'inch' else ACCEPTABLE_ERROR - self.statements = list(filter( - lambda i: not (isinstance(i, DxfLineStatement) and \ - is_equal_point(i.start, i.end, self.error_range)), - statements - )) - self.close_paths, self.open_paths = generate_paths(self.statements, self.error_range) - self.sorted_close_paths = [] - self.polarity = True # True means dark, False means clear - - @property - def units(self): - return _units - - def _polarity_command(self, polarity=None): - if polarity is None: - polarity = self.polarity - return '%LPD*%' if polarity else '%LPC*%' - - def _prepare_sorted_close_paths(self): - if self.sorted_close_paths: - return - for i in range(0, len(self.close_paths)): - for j in range(i + 1, len(self.close_paths)): - containee, container = judge_containment( - self.close_paths[i], self.close_paths[j], self.error_range) - if containee is not None: - containee.containers.append(container) - self.sorted_close_paths = sorted(self.close_paths, key=lambda path: len(path.containers)) - - def to_gerber(self, settings=FileSettings()): - def gerbers(): - yield 'G75*' - yield self._polarity_command() - yield 'D{0}*'.format(self.dcode) - if self.draw_mode == DxfFile.DM_FILL: - yield 'G36*' - if self.fill_mode == DxfFile.FM_TURN_OVER: - self._prepare_sorted_close_paths() - polarity = self.polarity - level = 0 - for path in self.sorted_close_paths: - if len(path.containers) > level: - level = len(path.containers) - polarity = not polarity - yield 'G37*' - yield self._polarity_command(polarity) - yield 'G36*' - yield path.to_gerber(settings) - else: - for path in self.close_paths: - yield path.to_gerber(settings) - yield 'G37*' - else: - pitch = self.pitch if self.draw_mode == DxfFile.DM_MOUSE_BITES else 0 - for path in self.open_paths: - yield path.to_gerber(settings, pitch=pitch, width=self.width) - for path in self.close_paths: - yield path.to_gerber(settings, pitch=pitch, width=self.width) - - return '\n'.join(gerbers()) - - def to_excellon(self, settings=FileSettings()): - if self.draw_mode == DxfFile.DM_FILL: - return - def drills(): - pitch = self.pitch if self.draw_mode == DxfFile.DM_MOUSE_BITES else 0 - for path in self.open_paths: - yield path.to_excellon(settings, pitch=pitch, width=self.width) - for path in self.close_paths: - yield path.to_excellon(settings, pitch=pitch, width=self.width) - return '\n'.join(drills()) - - def to_inch(self): - if self._units == 'metric': - self._units = 'inch' - self.pitch = inch(self.pitch) - self.width = inch(self.width) - self.error_range = inch(self.error_range) - for path in self.open_paths: - path.to_inch() - for path in self.close_paths: - path.to_inch() - - def to_metric(self): - if self._units == 'inch': - self._units = 'metric' - self.pitch = metric(self.pitch) - self.width = metric(self.width) - self.error_range = metric(self.error_range) - for path in self.open_paths: - path.to_metric() - for path in self.close_paths: - path.to_metric() - - def offset(self, offset_x, offset_y): - for path in self.open_paths: - path.offset(offset_x, offset_y) - for path in self.close_paths: - path.offset(offset_x, offset_y) - - def rotate(self, angle, center=(0, 0)): - for path in self.open_paths: - path.rotate(angle, center) - for path in self.close_paths: - path.rotate(angle, center) - -class DxfFile(CamFile): - DM_LINE = 0 - DM_FILL = 1 - DM_MOUSE_BITES = 2 - - FM_SIMPLE = 0 - FM_TURN_OVER = 1 - - FT_RX274X = 0 - FT_EXCELLON = 1 - - @classmethod - def from_dxf(cls, dxf, settings=None, draw_mode=None, filename=None): - fsettings = settings if settings else \ - FileSettings(zero_suppression='leading') - - if dxf.header['$INSUNITS'] == 1: - fsettings.units = 'inch' - if not settings: - fsettings.format = (2, 5) - else: - fsettings.units = 'metric' - if not settings: - fsettings.format = (3, 4) - - statements = [] - for entity in dxf.entities: - if entity.dxftype == 'LWPOLYLINE': - statements.append(DxfPolylineStatement(entity)) - elif entity.dxftype == 'LINE': - statements.append(DxfLineStatement.from_entity(entity)) - elif entity.dxftype == 'CIRCLE': - statements.append(DxfArcStatement(entity)) - elif entity.dxftype == 'ARC': - statements.append(DxfArcStatement(entity)) - - return cls(statements, fsettings, draw_mode, filename) - - @classmethod - def rectangle(cls, width, height, left=0, bottom=0, units='metric', draw_mode=None, filename=None): - if units == 'metric': - settings = FileSettings(units=units, zero_suppression='leading', format=(3,4)) - else: - settings = FileSettings(units=units, zero_suppression='leading', format=(2,5)) - statements = [ - DxfLineStatement(None, (left, bottom), (left + width, bottom)), - DxfLineStatement(None, (left + width, bottom), (left + width, bottom + height)), - DxfLineStatement(None, (left + width, bottom + height), (left, bottom + height)), - DxfLineStatement(None, (left, bottom + height), (left, bottom)), - ] - return cls(statements, settings, draw_mode, filename) - - def __init__(self, statements, settings=None, draw_mode=None, filename=None): - if not settings: - settings = FileSettings(units='metric', format=(3,4), zero_suppression='leading') - if draw_mode == None: - draw_mode = self.DM_LINE - - super(DxfFile, self).__init__(settings=settings, filename=filename) - self._draw_mode = draw_mode - self._fill_mode = self.FM_TURN_OVER - - self.aperture = ADParamStmt.circle(dcode=10, diameter=0.0) - if settings.units == 'inch': - self.aperture.to_inch() - else: - self.aperture.to_metric() - self.statements = DxfStatements( - statements, self.units, dcode=self.aperture.d, draw_mode=self.draw_mode, fill_mode=self.filename) - - @property - def dcode(self): - return self.aperture.dcode - - @dcode.setter - def dcode(self, value): - self.aperture.d = value - self.statements.dcode = value - - @property - def width(self): - return self.aperture.modifiers[0][0] - - @width.setter - def width(self, value): - self.aperture.modifiers = ([float(value),],) - self.statements.width = value - - @property - def draw_mode(self): - return self._draw_mode - - @draw_mode.setter - def draw_mode(self, value): - self._draw_mode = value - self.statements.draw_mode = value - - @property - def fill_mode(self): - return self._fill_mode - - @fill_mode.setter - def fill_mode(self, value): - self._fill_mode = value - self.statements.fill_mode = value - - @property - def pitch(self): - return self.statements.pitch - - @pitch.setter - def pitch(self, value): - self.statements.pitch = value - - def write(self, filename=None, filetype=FT_RX274X): - self.settings.notation = 'absolute' - self.settings.zeros = 'trailing' - filename = filename if filename is not None else self.filename - with open(filename, 'w') as f: - if filetype == self.FT_RX274X: - write_gerber_header(f, self.settings) - f.write(self.aperture.to_gerber(self.settings) + '\n') - f.write(self.statements.to_gerber(self.settings) + '\n') - f.write('M02*\n') - else: - tools = [ExcellonTool(self.settings, number=1, diameter=self.width)] - write_excellon_header(f, self.settings, tools) - f.write('T01\n') - f.write(self.statements.to_excellon(self.settings) + '\n') - f.write('M30\n') - - - def to_inch(self): - if self.units == 'metric': - self.aperture.to_inch() - self.statements.to_inch() - self.pitch = inch(self.pitch) - self.units = 'inch' - - def to_metric(self): - if self.units == 'inch': - self.aperture.to_metric() - self.statements.to_metric() - self.pitch = metric(self.pitch) - self.units = 'metric' - - def offset(self, offset_x, offset_y): - self.statements.offset(offset_x, offset_y) - - def rotate(self, angle, center=(0, 0)): - self.statements.rotate(angle, center) - - def negate_polarity(self): - self.statements.polarity = not self.statements.polarity - -def loads(data, filename=None): - if sys.version_info.major == 2: - data = unicode(data) - stream = io.StringIO(data) - dxf = dxfgrabber.read(stream) - return DxfFile.from_dxf(dxf) diff --git a/gerbonara/gerber/panelize/dxf_path.py b/gerbonara/gerber/panelize/dxf_path.py deleted file mode 100644 index 201dcff..0000000 --- a/gerbonara/gerber/panelize/dxf_path.py +++ /dev/null @@ -1,412 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -# Copyright 2019 Hiroshi Murayama - -from ..utils import inch, metric, write_gerber_value -from ..cam import FileSettings -from .utility import is_equal_point, is_equal_value, normalize_vec2d, dot_vec2d -from .excellon import CoordinateStmtEx - -class DxfPath(object): - def __init__(self, statements, error_range=0): - self.statements = statements - self.error_range = error_range - self.bounding_box = statements[0].bounding_box - self.containers = [] - for statement in statements[1:]: - self._merge_bounding_box(statement.bounding_box) - - @property - def start(self): - return self.statements[0].start - - @property - def end(self): - return self.statements[-1].end - - @property - def is_closed(self): - if len(self.statements) == 1: - return self.statements[0].is_closed - else: - return is_equal_point(self.start, self.end, self.error_range) - - def is_equal_to(self, target, error_range=0): - if not isinstance(target, DxfPath): - return False - if len(self.statements) != len(target.statements): - return False - if is_equal_point(self.start, target.start, error_range) and \ - is_equal_point(self.end, target.end, error_range): - for i in range(0, len(self.statements)): - if not self.statements[i].is_equal_to(target.statements[i], error_range): - return False - return True - elif is_equal_point(self.start, target.end, error_range) and \ - is_equal_point(self.end, target.start, error_range): - for i in range(0, len(self.statements)): - if not self.statements[i].is_equal_to(target.statements[-1 - i], error_range): - return False - return True - return False - - def contain(self, target, error_range=0): - for statement in self.statements: - if statement.is_equal_to(target, error_range): - return True - else: - return False - - def to_inch(self): - self.error_range = inch(self.error_range) - for statement in self.statements: - statement.to_inch() - - def to_metric(self): - self.error_range = metric(self.error_range) - for statement in self.statements: - statement.to_metric() - - def offset(self, offset_x, offset_y): - for statement in self.statements: - statement.offset(offset_x, offset_y) - - def rotate(self, angle, center=(0, 0)): - for statement in self.statements: - statement.rotate(angle, center) - - def reverse(self): - rlist = [] - for statement in reversed(self.statements): - statement.reverse() - rlist.append(statement) - self.statements = rlist - - def merge(self, element, error_range=0): - if self.is_closed or element.is_closed: - return False - if not error_range: - error_range = self.error_range - if is_equal_point(self.end, element.start, error_range): - return self._append_at_end(element, error_range) - elif is_equal_point(self.end, element.end, error_range): - element.reverse() - return self._append_at_end(element, error_range) - elif is_equal_point(self.start, element.end, error_range): - return self._insert_on_top(element, error_range) - elif is_equal_point(self.start, element.start, error_range): - element.reverse() - return self._insert_on_top(element, error_range) - else: - return False - - def _append_at_end(self, element, error_range=0): - if isinstance(element, DxfPath): - if self.is_equal_to(element, error_range): - return False - for i in range(0, min(len(self.statements), len(element.statements))): - if not self.statements[-1 - i].is_equal_to(element.statements[i]): - break - for j in range(0, min(len(self.statements), len(element.statements))): - if not self.statements[j].is_equal_to(element.statements[-1 - j]): - break - if i + j >= len(element.statements): - return False - mergee = list(element.statements) - if i > 0: - del mergee[0:i] - del self.statements[-i] - if j > 0: - del mergee[-j] - del self.statements[0:j] - for statement in mergee: - self._merge_bounding_box(statement.bounding_box) - self.statements.extend(mergee) - return True - else: - if self.statements[-1].is_equal_to(element, error_range) or \ - self.statements[0].is_equal_to(element, error_range): - return False - self._merge_bounding_box(element.bounding_box) - self.statements.appen(element) - return True - - def _insert_on_top(self, element, error_range=0): - if isinstance(element, DxfPath): - if self.is_equal_to(element, error_range): - return False - for i in range(0, min(len(self.statements), len(element.statements))): - if not self.statements[-1 - i].is_equal_to(element.statements[i]): - break - for j in range(0, min(len(self.statements), len(element.statements))): - if not self.statements[j].is_equal_to(element.statements[-1 - j]): - break - if i + j >= len(element.statements): - return False - mergee = list(element.statements) - if i > 0: - del mergee[0:i] - del self.statements[-i] - if j > 0: - del mergee[-j] - del self.statements[0:j] - self.statements[0:0] = mergee - return True - else: - if self.statements[-1].is_equal_to(element, error_range) or \ - self.statements[0].is_equal_to(element, error_range): - return False - self.statements.insert(0, element) - return True - - def _merge_bounding_box(self, box): - self.bounding_box = (min(self.bounding_box[0], box[0]), - min(self.bounding_box[1], box[1]), - max(self.bounding_box[2], box[2]), - max(self.bounding_box[3], box[3])) - - def may_be_in_collision(self, path): - if self.bounding_box[0] >= path.bounding_box[2] or \ - self.bounding_box[1] >= path.bounding_box[3] or \ - self.bounding_box[2] <= path.bounding_box[0] or \ - self.bounding_box[3] <= path.bounding_box[1]: - return False - else: - return True - - def to_gerber(self, settings=FileSettings(), pitch=0, width=0): - from .dxf import DxfArcStatement - if pitch == 0: - x0, y0 = self.statements[0].start - gerber = 'G01*\nX{0}Y{1}D02*\nG75*'.format( - write_gerber_value(x0, settings.format, - settings.zero_suppression), - write_gerber_value(y0, settings.format, - settings.zero_suppression), - ) - - for statement in self.statements: - x0, y0 = statement.start - x1, y1 = statement.end - if isinstance(statement, DxfArcStatement): - xc, yc = statement.center - gerber += '\nG{0}*\nX{1}Y{2}I{3}J{4}D01*'.format( - '03' if statement.end_angle > statement.start_angle else '02', - write_gerber_value(x1, settings.format, - settings.zero_suppression), - write_gerber_value(y1, settings.format, - settings.zero_suppression), - write_gerber_value(xc - x0, settings.format, - settings.zero_suppression), - write_gerber_value(yc - y0, settings.format, - settings.zero_suppression) - ) - else: - gerber += '\nG01*\nX{0}Y{1}D01*'.format( - write_gerber_value(x1, settings.format, - settings.zero_suppression), - write_gerber_value(y1, settings.format, - settings.zero_suppression), - ) - else: - def ploter(x, y): - return 'X{0}Y{1}D03*\n'.format( - write_gerber_value(x, settings.format, - settings.zero_suppression), - write_gerber_value(y, settings.format, - settings.zero_suppression), - ) - gerber = self._plot_dots(pitch, width, ploter) - - return gerber - - def to_excellon(self, settings=FileSettings(), pitch=0, width=0): - from .dxf import DxfArcStatement - if pitch == 0: - x0, y0 = self.statements[0].start - excellon = 'G00{0}\nM15\n'.format( - CoordinateStmtEx(x=x0, y=y0).to_excellon(settings)) - - for statement in self.statements: - x0, y0 = statement.start - x1, y1 = statement.end - if isinstance(statement, DxfArcStatement): - i = statement.center[0] - x0 - j = statement.center[1] - y0 - excellon += '{0}{1}\n'.format( - 'G03' if statement.end_angle > statement.start_angle else 'G02', - CoordinateStmtEx(x=x1, y=y1, i=i, j=j).to_excellon(settings)) - else: - excellon += 'G01{0}\n'.format( - CoordinateStmtEx(x=x1, y=y1).to_excellon(settings)) - - excellon += 'M16\nG05\n' - else: - def ploter(x, y): - return CoordinateStmtEx(x=x, y=y).to_excellon(settings) + '\n' - excellon = self._plot_dots(pitch, width, ploter) - - return excellon - - def _plot_dots(self, pitch, width, ploter): - out = '' - offset = 0 - for idx in range(0, len(self.statements)): - statement = self.statements[idx] - if offset < 0: - offset += pitch - for dot, offset in statement.dots(pitch, width, offset): - if dot is None: - break - if offset > 0 and (statement.is_closed or idx != len(self.statements) - 1): - break - #if idx == len(self.statements) - 1 and statement.is_closed and offset > -pitch: - # break - out += ploter(dot[0], dot[1]) - return out - - def intersections_with_halfline(self, point_from, point_to, error_range=0): - def calculator(statement): - return statement.intersections_with_halfline(point_from, point_to, error_range) - def validator(pt, statement, idx): - if is_equal_point(pt, statement.end, error_range) and \ - not self._judge_cross(point_from, point_to, idx, error_range): - return False - return True - return self._collect_intersections(calculator, validator, error_range) - - def intersections_with_arc(self, center, radius, angle_regions, error_range=0): - def calculator(statement): - return statement.intersections_with_arc(center, radius, angle_regions, error_range) - return self._collect_intersections(calculator, None, error_range) - - def _collect_intersections(self, calculator, validator, error_range): - allpts = [] - last = allpts - for i in range(0, len(self.statements)): - statement = self.statements[i] - cur = calculator(statement) - if cur: - for pt in cur: - for dest in allpts: - if is_equal_point(pt, dest, error_range): - break - else: - if validator is not None and not validator(pt, statement, i): - continue - allpts.append(pt) - last = cur - return allpts - - def _judge_cross(self, from_pt, to_pt, index, error_range): - standard = normalize_vec2d((to_pt[0] - from_pt[0], to_pt[1] - from_pt[1])) - normal = (standard[1], -standard[0]) - def statements(): - for i in range(index, len(self.statements)): - yield self.statements[i] - for i in range(0, index): - yield self.statements[i] - dot_standard = None - for statement in statements(): - tstart = statement.start - tend = statement.end - target = normalize_vec2d((tend[0] - tstart[0], tend[1] - tstart[1])) - dot= dot_vec2d(normal, target) - if dot_standard is None: - dot_standard = dot - continue - if is_equal_point(standard, target, error_range): - continue - return (dot_standard > 0 and dot > 0) or (dot_standard < 0 and dot < 0) - raise Exception('inconsistensy is detected while cross judgement between paths') - -def generate_paths(statements, error_range=0): - from .dxf import DxfPolylineStatement - - paths = [] - for statement in filter(lambda s: isinstance(s, DxfPolylineStatement), statements): - units = [unit for unit in statement.disassemble()] - paths.append(DxfPath(units, error_range)) - - unique_statements = [] - redundant = 0 - for statement in filter(lambda s: not isinstance(s, DxfPolylineStatement), statements): - for path in paths: - if path.contain(statement): - redundant += 1 - break - else: - for target in unique_statements: - if statement.is_equal_to(target, error_range): - redundant += 1 - break - else: - unique_statements.append(statement) - - paths.extend([DxfPath([s], error_range) for s in unique_statements]) - - prev_paths_num = 0 - while prev_paths_num != len(paths): - working = [] - for i in range(len(paths)): - mergee = paths[i] - for j in range(i + 1, len(paths)): - target = paths[j] - if target.merge(mergee, error_range): - break - else: - working.append(mergee) - prev_paths_num = len(paths) - paths = working - - closed_path = list(filter(lambda p: p.is_closed, paths)) - open_path = list(filter(lambda p: not p.is_closed, paths)) - return (closed_path, open_path) - -def judge_containment(path1, path2, error_range=0): - from .dxf import DxfArcStatement, DxfLineStatement - - nocontainment = (None, None) - if not path1.may_be_in_collision(path2): - return nocontainment - - def is_in_line_segment(point_from, point_to, point): - dx = point_to[0] - point_from[0] - ratio = (point[0] - point_from[0]) / dx if dx != 0 else \ - (point[1] - point_from[1]) / (point_to[1] - point_from[1]) - return ratio >= 0 and ratio <= 1 - - def contain_in_path(statement, path): - if isinstance(statement, DxfLineStatement): - segment = (statement.start, statement.end) - elif isinstance(statement, DxfArcStatement): - if statement.start == statement.end: - segment = (statement.start, statement.center) - else: - segment = (statement.start, statement.end) - else: - raise Exception('invalid dxf statement type') - pts = path.intersections_with_halfline(segment[0], segment[1], error_range) - if len(pts) % 2 == 0: - return False - for pt in pts: - if is_in_line_segment(segment[0], segment[1], pt): - return False - if isinstance(statement, DxfArcStatement): - pts = path.intersections_with_arc( - statement.center, statement.radius, statement.angle_regions, error_range) - if len(pts) > 0: - return False - return True - - if contain_in_path(path1.statements[0], path2): - containment = [path1, path2] - elif contain_in_path(path2.statements[0], path1): - containment = [path2, path1] - else: - return nocontainment - for i in range(1, len(containment[0].statements)): - if not contain_in_path(containment[0].statements[i], containment[1]): - return nocontainment - return containment diff --git a/gerbonara/gerber/panelize/gerber_statements.py b/gerbonara/gerber/panelize/gerber_statements.py deleted file mode 100644 index 208660e..0000000 --- a/gerbonara/gerber/panelize/gerber_statements.py +++ /dev/null @@ -1,49 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -# Copyright 2019 Hiroshi Murayama - -from ..gerber_statements import AMParamStmt, ADParamStmt -from ..utils import inch, metric -from .am_primitive import to_primitive_defs - -class ADParamStmtEx(ADParamStmt): - GEOMETRIES = { - 'C': [0,1], - 'R': [0,1,2], - 'O': [0,1,2], - 'P': [0,3], - } - - @classmethod - def from_stmt(cls, stmt): - modstr = ','.join([ - 'X'.join(['{0}'.format(x) for x in modifier]) - for modifier in stmt.modifiers]) - return cls(stmt.param, stmt.d, stmt.shape, modstr, stmt.units) - - def __init__(self, param, d, shape, modifiers, units): - super(ADParamStmtEx, self).__init__(param, d, shape, modifiers) - self.units = units - - def to_inch(self): - if self.units == 'inch': - return - self.units = 'inch' - if self.shape in self.GEOMETRIES: - indices = self.GEOMETRIES[self.shape] - self.modifiers = [tuple([ - inch(self.modifiers[0][i]) if i in indices else self.modifiers[0][i] \ - for i in range(len(self.modifiers[0])) - ])] - - def to_metric(self): - if self.units == 'metric': - return - self.units = 'metric' - if self.shape in self.GEOMETRIES: - indices = self.GEOMETRIES[self.shape] - self.modifiers = [tuple([ - metric(self.modifiers[0][i]) if i in indices else self.modifiers[0][i] \ - for i in range(len(self.modifiers[0])) - ])] diff --git a/gerbonara/gerber/panelize/utility.py b/gerbonara/gerber/panelize/utility.py deleted file mode 100644 index 0d57979..0000000 --- a/gerbonara/gerber/panelize/utility.py +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- - -# Copyright 2019 Hiroshi Murayama - -from math import cos, sin, pi, sqrt - -def is_equal_value(a, b, error_range=0): - return (a - b) * (a - b) <= error_range * error_range - -def is_equal_point(a, b, error_range=0): - return is_equal_value(a[0], b[0], error_range) and \ - is_equal_value(a[1], b[1], error_range) - -def normalize_vec2d(vec): - length = sqrt(vec[0] * vec[0] + vec[1] * vec[1]) - return (vec[0] / length, vec[1] / length) - -def dot_vec2d(vec1, vec2): - return vec1[0] * vec2[0] + vec1[1] * vec2[1] -- cgit